A Fully Progressive Approach to Single-Image Super-Resolution

被引:150
|
作者
Wang, Yifan [1 ,2 ]
Perazzi, Federico [2 ]
McWilliams, Brian [2 ]
Sorkine-Hornung, Alexander [2 ,3 ]
Sorkine-Hornung, Olga [1 ]
Schroers, Christopher [2 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] Disney Res, Zurich, Switzerland
[3] Oculus, Menlo Pk, CA USA
关键词
D O I
10.1109/CVPRW.2018.00131
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent deep learning approaches to single image super-resolution have achieved impressive results in terms of traditional error measures and perceptual quality. However, in each case it remains challenging to achieve high quality results for large upsampling factors. To this end, we propose a method (ProSR) that is progressive both in architecture and training: the network upsamples an image in intermediate steps, while the learning process is organized from easy to hard, as is done in curriculum learning. To obtain more photorealistic results, we design a generative adversarial network (GAN), named ProGanSR, that follows the same progressive multi-scale design principle. This not only allows to scale well to high upsampling factors (e.g., 8x) but constitutes a principled multi-scale approach that increases the reconstruction quality for all upsampling factors simultaneously. In particular ProSR ranks 2nd in terms of SSIM and 4th in terms of PSNR in the NTIRE2018 SISR challenge [35]. Compared to the top-ranking team, our model is marginally lower, but runs 5 times faster.
引用
收藏
页码:977 / 986
页数:10
相关论文
共 50 条
  • [31] A fast single-image super-resolution method implemented with CUDA
    Yuan, Yuan
    Yang, Xiaomin
    Wu, Wei
    Li, Hu
    Liu, Yiguang
    Liu, Kai
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (01) : 81 - 97
  • [32] A Practical Contrastive Learning Framework for Single-Image Super-Resolution
    Wu, Gang
    Jiang, Junjun
    Liu, Xianming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15834 - 15845
  • [33] MATRIX-VALUE REGRESSION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    2013 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2013, : 215 - 220
  • [34] Single-image super-resolution with multilevel residual attention network
    Ding Qin
    Xiaodong Gu
    Neural Computing and Applications, 2020, 32 : 15615 - 15628
  • [35] Bayesian Anchored Neighborhood Regression for Single-Image Super-Resolution
    Tang, Yinggan
    Fan, Ailian
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (08) : 5309 - 5327
  • [36] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 11 - 32
  • [37] Coarse-to-Fine Learning for Single-Image Super-Resolution
    Zhang, Kaibing
    Tao, Dacheng
    Gao, Xinbo
    Li, Xuelong
    Li, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (05) : 1109 - 1122
  • [38] Residual Triplet Attention Network for Single-Image Super-Resolution
    Huang, Feng
    Wang, Zhifeng
    Wu, Jing
    Shen, Ying
    Chen, Liqiong
    ELECTRONICS, 2021, 10 (17)
  • [39] Anchored neighborhood deep network for single-image super-resolution
    Wuzhen Shi
    Shaohui Liu
    Feng Jiang
    Debin Zhao
    Zhihong Tian
    EURASIP Journal on Image and Video Processing, 2018
  • [40] Example-based learning for single-image super-resolution
    Kim, Kwang In
    Kwon, Younghee
    PATTERN RECOGNITION, 2008, 5096 : 456 - +