Mathematical model of the glucose-insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

被引:8
|
作者
Han, Kyungreem [3 ,4 ]
Kang, Hyuk [5 ]
Choi, M. Y. [1 ,2 ]
Kim, Jinwoong [3 ,4 ]
Lee, Myung-Shik [6 ,7 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea
[2] Seoul Natl Univ, Ctr Theoret Phys, Seoul 151747, South Korea
[3] Seoul Natl Univ, Coll Pharm, Seoul 151742, South Korea
[4] Seoul Natl Univ, Pharmaceut Sci Res Inst, Seoul 151742, South Korea
[5] Natl Inst Math Sci, Taejon 305340, South Korea
[6] Sungkyunkwan Univ, Samsung Med Ctr, Dept Med, Seoul 135710, South Korea
[7] Sungkyunkwan Univ, Sch Med, Seoul 135710, South Korea
基金
新加坡国家研究基金会;
关键词
Mathematical model; Numerical simulation; Emergent property; Glucose-insulin regulatory system; Pancreatic beta-cell function; Insulin resistance; SECRETION; SENSITIVITY; MECHANISMS; RELEASE; RISK; CA2+;
D O I
10.1016/j.physleta.2012.08.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A theoretical approach to the glucose-insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca2+ concentration, and insulin secretion in pancreatic beta-cells, together with the whole-body level glucose-insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the beta-cell function and insulin resistance in clinical examination. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3150 / 3157
页数:8
相关论文
共 50 条
  • [1] A Mathematical Model of Glucose-Insulin Interaction
    Aydin, Perihan Hatice
    Karaaslan, Fatih
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [2] Dynamics of a glucose-insulin model
    Ma, Mingju
    Li, Jun
    JOURNAL OF BIOLOGICAL DYNAMICS, 2022, 16 (01) : 733 - 745
  • [3] A new chaotic model for glucose-insulin regulatory system
    Shabestari, Payam Sadeghi
    Panahi, Shirin
    Hatef, Boshra
    Jafari, Sajad
    Sprott, Julien C.
    CHAOS SOLITONS & FRACTALS, 2018, 112 : 44 - 51
  • [4] An Integrated Model for the Glucose-Insulin System
    Silber, Hanna E.
    Jauslin, Petra M.
    Frey, Nicolas
    Karlsson, Mats O.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2010, 106 (03) : 189 - 194
  • [5] Chaotic dynamics of a fractional order glucose-insulin regulatory system
    Rajagopal, Karthikeyan
    Bayani, Atiyeh
    Jafari, Sajad
    Karthikeyan, Anitha
    Hussain, Iqtadar
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (07) : 1108 - 1118
  • [6] Bifurcation and Stability Analysis of Glucose-Insulin Regulatory System in the Presence of β-Cells
    Kumari, Preety
    Singh, Swarn
    Singh, Harendra Pal
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (05): : 1743 - 1756
  • [7] Mathematical model of glucose-insulin homeostasis in healthy rats
    Lombarte, Mercedes
    Lupo, Maela
    Campetelli, German
    Basualdo, Marta
    Rigalli, Alfredo
    MATHEMATICAL BIOSCIENCES, 2013, 245 (02) : 269 - 277
  • [8] Analysis of a model of the glucose-insulin regulatory system with two delays
    Li, Jiaxu
    Kuang, Yang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (03) : 757 - 776
  • [9] Dynamics analysis in a delayed glucose-insulin model incorporating obesity
    Gao, Chunyan
    Chen, Fangqi
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [10] Dynamics of a New Delayed Glucose-Insulin Model with Obesity
    Gao, Chunyan
    Chen, Fangqi
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (06):