Structure-activity characterization of sulfide:quinone oxidoreductase variants

被引:29
作者
Cherney, Maia M. [1 ]
Zhang, Yanfei [1 ]
James, Michael N. G.
Weiner, Joel H. [1 ]
机构
[1] Univ Alberta, Fac Med & Dent, Sch Translat Med, Dept Biochem,Katz Ctr Pharm & Hlth Res 4 020J, Edmonton, AB T6G 2H7, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
Flavin adenine dinucleotide; Variants; Peripheral membrane protein; Acidithiobacillus ferrooxidans; X-ray crystallography; Hydrogen sulfide; SULFIDE-QUINONE OXIDOREDUCTASE; HYDROGEN-SULFIDE; OXIDATION; PROTEIN; SULFUR; REDUCTION; MECHANISM; BACTERIUM; GENE;
D O I
10.1016/j.jsb.2012.04.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sulfide:quinone oxidoreductase (SQR) is a peripheral membrane protein that catalyzes the oxidation of sulfide species to elemental sulfur. The enzymatic reaction proceeds in two steps. The electrons from sulfides are transferred first to the enzyme cofactor, FAD, which, in turn, passes them onto the quinone pool in the membrane. Several wild-type SQR structures have been reported recently. However, the enzymatic mechanism of SQR has not been fully delineated. In order to understand the role of the catalytically essential residues in the enzymatic mechanism of SQR we produced a number of variants of the conserved residues in the catalytic site including the cysteine triad of SQR from the acidophilic, chemolithotrophic bacterium Acidithiobacillus ferrooxidans. These were structurally characterized and their activities for each reaction step were determined. In addition, the crystal structures of the wild-type SQR with sodium selenide and gold(I) cyanide have been determined. Previously we proposed a mechanism for the reduction of sulfides to elemental sulfur involving nucleophilic attack of Cys356 on C-4A atom of FAD. Here we also consider an alternative anionic radical mechanism by direct electron transfer from Cys356 to the isoalloxazine ring of FAD. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:319 / 328
页数:10
相关论文
共 34 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]  
[Anonymous], 1989, Molecular Cloning: A Laboratory
[3]  
ARIELI B, 1991, J BIOL CHEM, V266, P104
[4]   Structural and Functional Insights into Sulfide:Quinone Oxidoreductase [J].
Brito, Jose A. ;
Sousa, Filipa L. ;
Stelter, Meike ;
Bandeiras, Tiago M. ;
Vonrhein, Clemens ;
Teixeira, Miguel ;
Pereira, Manuela M. ;
Archer, Margarida .
BIOCHEMISTRY, 2009, 48 (24) :5613-5622
[5]   Crystal Structure of Sulfide:Quinone Oxidoreductase from Acidithiobacillus ferrooxidans: Insights into Sulfidotrophic Respiration and Detoxification [J].
Cherney, Maia M. ;
Zhang, Yanfei ;
Solomonson, Matthew ;
Weiner, Joel H. ;
James, Michael N. G. .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 398 (02) :292-305
[6]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[7]   Scaling and assessment of data quality [J].
Evans, P .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2006, 62 :72-82
[8]  
Flint DH, 1996, J BIOL CHEM, V271, P16068
[9]   Multiple roles of cysteine in biocatalysis [J].
Giles, NM ;
Giles, GI ;
Jacob, C .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 300 (01) :1-4
[10]   Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis [J].
Griesbeck, C ;
Schütz, M ;
Schödl, T ;
Bathe, S ;
Nausch, L ;
Mederer, N ;
Vielreicher, M ;
Hauska, G .
BIOCHEMISTRY, 2002, 41 (39) :11552-11565