Polynomial processes and their applications to mathematical finance

被引:77
作者
Cuchiero, Christa [1 ]
Keller-Ressel, Martin [2 ]
Teichmann, Josef [3 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Tech Univ Berlin, Inst Math, Fak 2, D-10623 Berlin, Germany
[3] ETH, D MATH, CH-8092 Zurich, Switzerland
关键词
Markov processes; Diffusions with jumps; Affine processes; Analytic tractability; Pricing; Hedging;
D O I
10.1007/s00780-012-0188-x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a class of Markov processes, called m-polynomial, for which the calculation of (mixed) moments up to order m only requires the computation of matrix exponentials. This class contains affine processes, processes with quadratic diffusion coefficients, as well as L,vy-driven SDEs with affine vector fields. Thus, many popular models such as exponential L,vy models or affine models are covered by this setting. The applications range from statistical GMM estimation procedures to new techniques for option pricing and hedging. For instance, the efficient and easy computation of moments can be used for variance reduction techniques in Monte Carlo methods.
引用
收藏
页码:711 / 740
页数:30
相关论文
共 23 条
  • [1] Akhiezer N. I., 1965, CLASSICAL MOMENT PRO
  • [2] [Anonymous], 2000, GRAD TEXT M
  • [3] Post-'87 crash fears in the S&P 500 futures option market
    Bates, DS
    [J]. JOURNAL OF ECONOMETRICS, 2000, 94 (1-2) : 181 - 238
  • [4] Carr P, 1999, J COMPUT FINANC, V2, P61, DOI DOI 10.21314/JCF.1999.043
  • [5] Quadratic term structure models for risk-free and defaultable rates
    Chen, L
    Filipovic, D
    Poor, HV
    [J]. MATHEMATICAL FINANCE, 2004, 14 (04) : 515 - 536
  • [6] Equivalent and absolutely continuous measure changes for jump-diffusion processes
    Cheridito, P
    Filipovic, D
    Yor, M
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (03) : 1713 - 1732
  • [7] SEMI-MARTINGALES AND MARKOV-PROCESSES
    CINLAR, E
    JACOD, J
    PROTTER, P
    SHARPE, MJ
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 54 (02): : 161 - 219
  • [8] Duffie D, 2003, ANN APPL PROBAB, V13, P984
  • [9] Dunkl CF., 1992, CONT MATH, V138, P123, DOI 10.1090/conm/138
  • [10] The pearson diffusions: A class of statistically tractable diffusion processes
    Forman, Julie Lyng
    Sorensen, Michael
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (03) : 438 - 465