AXIOMS OF ADAPTIVITY WITH SEPARATE MARKING FOR DATA RESOLUTION

被引:29
作者
Carstensen, C. [1 ]
Rabus, H. [1 ]
机构
[1] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
关键词
adaptivity; finite element method; nonstandard finite element method; mixed finite element method; optimal convergence; least-squares finite element method; QUASI-OPTIMAL CONVERGENCE; ELEMENT; OPTIMALITY;
D O I
10.1137/16M1068050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mixed finite element methods with flux errors in H(div)-norms and div-least-squares finite element methods require a separate marking strategy in obligatory adaptive mesh-refining. The refinement indicator sigma(2)(T, K)=eta(2)(T, K)+mu(2)(K) of a finite element domain K in an admissible triangulation T consists of some residual-based error estimator eta(T, K) with some reduction property under local mesh-refining and some data approximation error mu(K). Separate marking means either Dorfler marking if mu(2)(T) <= kappa eta(2)(T) or otherwise an optimal data approximation algorithm with controlled accuracy. The axioms are sufficient conditions on the estimators eta(T, K) and data approximation errors mu(K) for optimal asymptotic convergence rates. The enfolded set of axioms of this paper simplifies [C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Comput. Math. Appl., 67 (2014), pp. 1195-1253] for collective marking, treats separate marking established for the first time in an abstract framework, generalizes [C. Carstensen and E.-J. Park, SIAM J. Numer. Anal., 53 (2015), pp. 43-62] for least-squares schemes, and extends [C. Carstensen and H. Rabus, Math. Comp., 80 (2011), pp. 649-667] to the mixed finite element method with flux error control in H(div). The paper gives an outline of the mathematical analysis for optimal convergence rates but also serves as a reference so that future contributions merely verify a few axioms in a new application in order to ensure optimal mesh-refinement of the adaptive algorithm.
引用
收藏
页码:2644 / 2665
页数:22
相关论文
共 25 条
  • [1] Error estimators for a mixed method
    Alonso, A
    [J]. NUMERISCHE MATHEMATIK, 1996, 74 (04) : 385 - 395
  • [2] [Anonymous], 2013, SPRINGER SERIES COMP, DOI DOI 10.1007/978-3-642-36519-5
  • [3] An optimally convergent adaptive mixed finite element method
    Becker, Roland
    Mao, Shipeng
    [J]. NUMERISCHE MATHEMATIK, 2008, 111 (01) : 35 - 54
  • [4] Adaptive finite element methods with convergence rates
    Binev, P
    Dahmen, W
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 219 - 268
  • [5] Fast computation in adaptive tree approximation
    Binev, P
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 193 - 217
  • [6] An adaptive least-squares FEM for the Stokes equations with optimal convergence rates
    Bringmann, P.
    Carstensen, C.
    [J]. NUMERISCHE MATHEMATIK, 2017, 135 (02) : 459 - 492
  • [7] Bringmann P., SIAM J NUME IN PRESS
  • [8] Axioms of adaptivity
    Carstensen, C.
    Feischl, M.
    Page, M.
    Praetorius, D.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) : 1195 - 1253
  • [9] A posteriori error estimate for the mixed finite element method
    Carstensen, C
    [J]. MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 465 - 476
  • [10] Carstensen C., 2017, QUASIOPTIMALIT UNPUB