SPARSE REGULAR RANDOM GRAPHS: SPECTRAL DENSITY AND EIGENVECTORS

被引:58
|
作者
Dumitriu, Ioana [1 ]
Pal, Soumik [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
来源
ANNALS OF PROBABILITY | 2012年 / 40卷 / 05期
基金
美国国家科学基金会;
关键词
Random regular graphs; spectral distribution; universality; semicircle law; LOCAL EIGENVALUE STATISTICS; LARGE RANDOM MATRICES; BULK UNIVERSALITY; SEMICIRCLE LAW; ENSEMBLES; EDGE; DELOCALIZATION; FLUCTUATIONS; CONVERGENCE;
D O I
10.1214/11-AOP673
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We examine the empirical distribution of the eigenvalues and the eigenvectors of adjacency matrices of sparse regular random graphs. We find that when the degree sequence of the graph slowly increases to infinity with the number of vertices, the empirical spectral distribution converges to the semicircle law. Moreover, we prove concentration estimates on the number of eigenvalues over progressively smaller intervals. We also show that, with high probability, all the eigenvectors are delocalized.
引用
收藏
页码:2197 / 2235
页数:39
相关论文
共 50 条
  • [1] Convergence of the density of states and delocalization of eigenvectors on random regular graphs
    Geisinger, Leander
    JOURNAL OF SPECTRAL THEORY, 2015, 5 (04) : 783 - 827
  • [2] ON THE ALMOST EIGENVECTORS OF RANDOM REGULAR GRAPHS
    Backhausz, Agnes
    Szegedy, Balazs
    ANNALS OF PROBABILITY, 2019, 47 (03): : 1677 - 1725
  • [3] Sparse random graphs: Eigenvalues and eigenvectors
    Tran, Linh V.
    Vu, Van H.
    Wang, Ke
    RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (01) : 110 - 134
  • [4] SPARSE EIGENVECTORS OF GRAPHS
    Teke, Oguzhan
    Vaidyanathan, P. P.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3904 - 3908
  • [5] The spectral gap of random regular graphs
    Sarid, Amir
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (02) : 557 - 587
  • [6] Regular pairs in sparse random graphs I
    Kohayakawa, Y
    Rödl, V
    RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (04) : 359 - 434
  • [7] THE SPECTRAL GAP OF DENSE RANDOM REGULAR GRAPHS
    Tikhomirov, Konstantin
    Youssef, Pierre
    ANNALS OF PROBABILITY, 2019, 47 (01): : 362 - 419
  • [8] Spectral classes of regular, random, and empirical graphs
    Gu, Jiao
    Jost, Juergen
    Liu, Shiping
    Stadler, Peter F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 489 : 30 - 49
  • [9] Spectral techniques applied to sparse random graphs
    Feige, U
    Ofek, E
    RANDOM STRUCTURES & ALGORITHMS, 2005, 27 (02) : 251 - 275
  • [10] Braess's Paradox for the Spectral Gap in Random Graphs and Delocalization of Eigenvectors
    Eldan, Ronen
    Racz, Miklos Z.
    Schramm, Tselil
    RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (04) : 584 - 611