Glycolysis and fatty acid β-oxidation, which one is the culprit of ischemic reperfusion injury?

被引:0
作者
Gao, Qing [1 ]
Deng, Hao [2 ]
Li, Huhu [1 ]
Sun, Chun [1 ]
Sun, Yingxin [1 ]
Wei, Bing [1 ]
Guo, Maojuan [1 ]
Jiang, Xijuan [1 ]
机构
[1] Tianjin Univ Tradit Chinese Med, Sch Integrat Med, 88th Yuquan Rd, Tianjin 300193, Peoples R China
[2] Tianjin Univ Tradit Chinese Med, Teaching Hosp 1, Tianjin 300193, Peoples R China
来源
INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE | 2018年 / 11卷 / 01期
基金
中国国家自然科学基金;
关键词
Glycolysis; fatty acid beta-oxidation; intermediate metabolite; ischemic reperfusion injury; ACTIVATED PROTEIN-KINASE; CARDIAC ENERGY-METABOLISM; MYOCARDIAL-ISCHEMIA; MALONYL-COA; GLUCOSE-OXIDATION; HEART-DISEASE; RAT HEARTS; SUPEROXIDE-PRODUCTION; THERAPEUTIC TARGET; SIGNALING PATHWAYS;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Thrombolysis therapy and percutaneous coronary intervention are common methods in the treatment of acute myocardial infarction. These methods can recover the cardiac function in most cases. But in almost one-third circumstances, cardiac dysfunction and structural damage aggravated, which is known as ischemia-reperfusion injury. Normally, most ATP in cardiomyocytes was produced from fatty acid beta-oxidation. However, both fatty acid beta-oxidation and glycolysis accelerated due to AMPK activation during ischemic. Glycolysis uncoupled from oxidation results in intermediate metabolite accumulation, such as lactate, proton, succinate and NADH. During reperfusion, the recovering rate of fatty acid beta-oxidation even exceed the rate under physiological condition due to the sudden influx of high concentration of oxygen. High rate of fatty acid beta-oxidation inhibits glycose oxidation and results in proton and Ca2+ overload, especially huge amount of ROS production, which leads to mitochondria damage and cell death. Clearly, energy metabolism disorder result from the sudden change of oxygen supply during ischemic and reperfusion is the main cause of ischemic reperfusion injury. However, glycolysis and fatty acid beta-oxidation, which one is the real culprit in ischemic reperfusion injury is controversial. In this review, we will discuss the process of glucose metabolism and fatty acid beta-oxidation thoroughly, as well as the energy sensor AMPK signaling, in order to clarify how to modulate energy metabolism to reduce injury during ischemic and reperfusion.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 80 条
  • [1] Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway
    Ashrafian, Houman
    Czibik, Gabor
    Bellahcene, Mohamed
    Aksentijevic, Dunja
    Smith, Anthony C.
    Mitchell, Sarah J.
    Dodd, Michael S.
    Kirwan, Jennifer
    Byrne, Jonathan J.
    Ludwig, Christian
    Isackson, Henrik
    Yavari, Arash
    Stottrup, Nicolaj B.
    Contractor, Hussain
    Cahill, Thomas J.
    Sahgal, Natasha
    Ball, Daniel R.
    Birkler, Rune I. D.
    Hargreaves, Lain
    Tennant, Daniel A.
    Land, John
    Lygate, Craig A.
    Johannsen, Mogens
    Kharbanda, Rajesh K.
    Neubauer, Stefan
    Redwood, Charles
    de Cabo, Rafael
    Ahmet, Ismayil
    Talan, Mark
    Guenther, Ulrich L.
    Robinson, Alan J.
    Viant, Mark R.
    Pollard, Patrick J.
    Tyler, Damian J.
    Watkins, Hugh
    [J]. CELL METABOLISM, 2012, 15 (03) : 361 - 371
  • [2] Intracellular Na+ regulation in cardiac myocytes
    Bers, DM
    Barry, WH
    Despa, S
    [J]. CARDIOVASCULAR RESEARCH, 2003, 57 (04) : 897 - 912
  • [3] The AMP-activated protein kinase cascade - a unifying system for energy control
    Carling, D
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (01) : 18 - 24
  • [4] Signaling pathways involved in cardiac energy metabolism
    Chanda, Dipanjan
    Luiken, Joost J. F. P.
    Glatz, Jan F. C.
    [J]. FEBS LETTERS, 2016, 590 (15) : 2364 - 2374
  • [5] A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury
    Chouchani, Edward T.
    Pell, Victoria R.
    James, Andrew M.
    Work, Lorraine M.
    Saeb-Parsy, Kourosh
    Frezza, Christian
    Krieg, Thomas
    Murphy, Michael P.
    [J]. CELL METABOLISM, 2016, 23 (02) : 254 - 263
  • [6] Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
    Chouchani, Edward T.
    Pell, Victoria R.
    Gaude, Edoardo
    Aksentijevic, Dunja
    Sundier, Stephanie Y.
    Robb, Ellen L.
    Logan, Angela
    Nadtochiy, Sergiy M.
    Ord, Emily N. J.
    Smith, Anthony C.
    Eyassu, Filmon
    Shirley, Rachel
    Hu, Chou-Hui
    Dare, Anna J.
    James, Andrew M.
    Rogatti, Sebastian
    Hartley, Richard C.
    Eaton, Simon
    Costa, Ana S. H.
    Brookes, Paul S.
    Davidson, Sean M.
    Duchen, Michael R.
    Saeb-Parsy, Kourosh
    Shattock, Michael J.
    Robinson, Alan J.
    Work, Lorraine M.
    Frezza, Christian
    Krieg, Thomas
    Murphy, Michael P.
    [J]. NATURE, 2014, 515 (7527) : 431 - +
  • [7] Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
    Chouchani, Edward T.
    Methner, Carmen
    Nadtochiy, Sergiy M.
    Logan, Angela
    Pell, Victoria R.
    Ding, Shujing
    James, Andrew M.
    Cocheme, Helena M.
    Reinhold, Johannes
    Lilley, Kathryn S.
    Partridge, Linda
    Fearnley, Ian M.
    Robinson, Alan J.
    Hartley, Richard C.
    Smith, Robin A. J.
    Krieg, Thomas
    Brookes, Paul S.
    Murphy, Michael P.
    [J]. NATURE MEDICINE, 2013, 19 (06) : 753 - +
  • [8] PLASMA CATECHOLAMINES AND CARBOHYDRATE-METABOLISM IN PATIENTS WITH ACUTE MYOCARDIAL-INFARCTION
    CHRISTENSEN, NJ
    VIDEBAEK, J
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1974, 54 (02) : 278 - 286
  • [9] Citric Acid Cycle Intermediates in Cardioprotection
    Czibik, Gabor
    Steeples, Violetta
    Yavari, Arash
    Ashrafian, Houman
    [J]. CIRCULATION-CARDIOVASCULAR GENETICS, 2014, 7 (05) : 711 - 719
  • [10] Glucose for the heart
    Depre, C
    Vanoverschelde, JLJ
    Taegtmeyer, H
    [J]. CIRCULATION, 1999, 99 (04) : 578 - 588