BIFURCATION CONTROL OF A PARAMETRIC PENDULUM

被引:36
作者
De Paula, Aline S. [3 ]
Savi, Marcelo A. [2 ]
Wiercigroch, Marian [1 ]
Pavlovskaia, Ekaterina [1 ]
机构
[1] Univ Aberdeen, Ctr Appl Dynam Res, Sch Engn, Aberdeen AB24 3UE, Scotland
[2] Univ Fed Rio de Janeiro, Dept Mech Engn, COPPE, BR-21941972 Rio De Janeiro, RJ, Brazil
[3] Univ Brasilia, Dept Mech Engn, BR-70910900 Brasilia, DF, Brazil
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 05期
关键词
Nonlinear dynamics; chaos; control; parametric pendulum; LOCAL FEEDBACK STABILIZATION; TRANSIENT TUMBLING CHAOS; ROTATING-SOLUTIONS; PERIODIC-ORBITS; ATTRACTORS; MOTION; HOPF;
D O I
10.1142/S0218127412501118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we apply chaos control methods to modify bifurcations in a parametric pendulum-shaker system. Specifically, the extended time-delayed feedback control method is employed to maintain stable rotational solutions of the system avoiding period doubling bifurcation and bifurcation to chaos. First, the classical chaos control is realized, where some unstable periodic orbits embedded in chaotic attractor are stabilized. Then period doubling bifurcation is prevented in order to extend the frequency range where a period-1 rotating orbit is observed. Finally, bifurcation to chaos is avoided and a stable rotating solution is obtained. In all cases, the continuous method is used for successive control. The bifurcation control method proposed here allows the system to maintain the desired rotational solutions over an extended range of excitation frequency and amplitude.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control
    Ma, Suqi
    Lu, Qishao
    Feng, Zhaosheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 993 - 1007
  • [42] Stochastic rotational response of a parametric pendulum coupled with an SDOF system
    Alevras, P.
    Yurchenko, D.
    PROBABILISTIC ENGINEERING MECHANICS, 2014, 37 : 124 - 131
  • [43] Chaos in a Magnetic Pendulum Subjected to Tilted Excitation and Parametric Damping
    Kwuimy, C. A. Kitio
    Nataraj, C.
    Belhaq, M.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [44] Complex dynamics in pendulum equation with parametric and external excitations I
    Jing, Zhujun
    Yang, Jianping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10): : 2887 - 2902
  • [45] Dynamics of a parametric rotating pendulum under a realistic wave profile
    Andreeva T.
    Alevras P.
    Naess A.
    Yurchenko D.
    International Journal of Dynamics and Control, 2016, 4 (2) : 233 - 238
  • [46] Parametric resonance induced chaos in magnetic damped driven pendulum
    Khomeriki, Giorgi
    PHYSICS LETTERS A, 2016, 380 (31-32) : 2382 - 2385
  • [47] Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum
    Xu, Xu
    Wiercigroch, M.
    NONLINEAR DYNAMICS, 2007, 47 (1-3) : 311 - 320
  • [48] Coupled oscillators in identification of nonlinear damping of a real parametric pendulum
    Olejnik, Pawel
    Awrejcewicz, Jan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 98 : 91 - 107
  • [49] Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum
    Xu Xu
    M. Wiercigroch
    Nonlinear Dynamics, 2007, 47 : 311 - 320
  • [50] Stationary and non-stationary oscillatory dynamics of the parametric pendulum
    Kovaleva, Margarita
    Manevitch, Leonid
    Romeo, Francesco
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 76 : 1 - 11