BIFURCATION CONTROL OF A PARAMETRIC PENDULUM

被引:36
作者
De Paula, Aline S. [3 ]
Savi, Marcelo A. [2 ]
Wiercigroch, Marian [1 ]
Pavlovskaia, Ekaterina [1 ]
机构
[1] Univ Aberdeen, Ctr Appl Dynam Res, Sch Engn, Aberdeen AB24 3UE, Scotland
[2] Univ Fed Rio de Janeiro, Dept Mech Engn, COPPE, BR-21941972 Rio De Janeiro, RJ, Brazil
[3] Univ Brasilia, Dept Mech Engn, BR-70910900 Brasilia, DF, Brazil
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 05期
关键词
Nonlinear dynamics; chaos; control; parametric pendulum; LOCAL FEEDBACK STABILIZATION; TRANSIENT TUMBLING CHAOS; ROTATING-SOLUTIONS; PERIODIC-ORBITS; ATTRACTORS; MOTION; HOPF;
D O I
10.1142/S0218127412501118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we apply chaos control methods to modify bifurcations in a parametric pendulum-shaker system. Specifically, the extended time-delayed feedback control method is employed to maintain stable rotational solutions of the system avoiding period doubling bifurcation and bifurcation to chaos. First, the classical chaos control is realized, where some unstable periodic orbits embedded in chaotic attractor are stabilized. Then period doubling bifurcation is prevented in order to extend the frequency range where a period-1 rotating orbit is observed. Finally, bifurcation to chaos is avoided and a stable rotating solution is obtained. In all cases, the continuous method is used for successive control. The bifurcation control method proposed here allows the system to maintain the desired rotational solutions over an extended range of excitation frequency and amplitude.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Parametric resonances in a base-excited double pendulum
    Sartorelli, J. C.
    Lacarbonara, W.
    NONLINEAR DYNAMICS, 2012, 69 (04) : 1679 - 1692
  • [32] Lyapunov Exponents of Early Stage Dynamics of Parametric Mutations of a Rigid Pendulum with Harmonic Excitation
    Smiechowicz, Wojciech
    Loup, Theo
    Olejnik, Pawel
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2019, 24 (04)
  • [33] Transient tumbling chaos and damping identification for parametric pendulum
    Horton, Bryan
    Wiercigroch, Marian
    Xu, Xu
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1866): : 767 - 784
  • [34] Controlling chaos by periodic parametric excitation in Froude pendulum
    Sahay, I
    Saha, LM
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2004, 27 (1-2): : 65 - 68
  • [35] Parametric bifurcation of a viscoelastic column subject to axial harmonic force and time-delayed control
    Leung, A. Y. T.
    Yang, H. X.
    Chen, J. Y.
    COMPUTERS & STRUCTURES, 2014, 136 : 47 - 55
  • [36] Control of vibration in mechanical system with a pendulum by MR damper
    Kecik, Krzysztof
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (02): : 223 - 226
  • [37] An Electromechanical Pendulum Robot Arm in Action: Dynamics and Control
    Kadjie, A. Notue
    Tuwa, P. R. Nwagoum
    Woafo, Paul
    SHOCK AND VIBRATION, 2017, 2017
  • [38] LMI-based LSVF control of a class of nonlinear systems with parametric uncertainty: an application to an inverted pendulum system
    Sarkar, Chaity
    Sengupta, Aparajita
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (12) : 2520 - 2532
  • [39] Subharmonic Bifurcation for a Non-smooth Double Pendulum with Unilateral Impact
    Guo, Xiu-ying
    Zhang, Gang
    Tian, Rui-lan
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (02) : 349 - 367
  • [40] Homoclinic bifurcation and chaos control in MEMS resonators
    Siewe, M. Siewe
    Hegazy, Usama H.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (12) : 5533 - 5552