Perturbation Analysis for Oblique Projection Generalized Inverses

被引:1
作者
Du, Fapeng [1 ]
Nashed, M. Zuhair [2 ]
机构
[1] Xuzhou Univ Technol, Sch Math & Stat, Xuzhou 221008, Jiangsu, Peoples R China
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Gap between subspaces; oblique projection generalized inverse; perturbation analysis of generalized inverse; CLOSED LINEAR-OPERATORS; STABLE PERTURBATION; UNIFIED APPROACH; DRAZIN INVERSE; BOUNDS;
D O I
10.1080/01630563.2020.1813163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notion of stable perturbation of a subspace in Banach space. Utilizing this notion and the gap between subspaces, we develop a perturbation analysis for the oblique projection generalized inverse when the operator T, the range and null space of the projectors have perturbations simultaneously and estimate an upper bound of parallel to(T) over bar (+)(p,Q) - T-p,Q(+)parallel to Our results are new and extend the related results on the perturbation analysis of the oblique projection generalized inverse.
引用
收藏
页码:1728 / 1740
页数:13
相关论文
共 27 条
  • [1] [Anonymous], 1984, Grundlehren der Mathematischen Wissenschaften
  • [2] Cao J., 2013, ANN U BUCHAR MATH SE, V4, P433
  • [3] AN EXTENSION OF THE PERTURBATION ANALYSIS FOR THE DRAZIN INVERSE
    Castro-Gonzalez, N.
    Martinez-Serrano, M. F.
    Robles, J.
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 539 - 556
  • [4] Perturbation analysis for the operator equation Tx=b in Banach spaces
    Chen, GL
    Xue, YF
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (01) : 107 - 125
  • [5] Perturbation analysis of the least squares solution in Hilbert spaces
    Chen, GL
    Wei, MS
    Xue, YF
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 244 : 69 - 80
  • [6] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF CLOSED LINEAR OPERATORS IN BANACH SPACES
    Du, Fapeng
    Chen, Jianlong
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 240 - 253
  • [7] Du FP, 2012, ELECTRON J LINEAR AL, V23, P586
  • [8] On perturbations for oblique projection generalized inverses of closed linear operators in Banach spaces
    Huang, Qianglian
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (12) : 2468 - 2474
  • [9] Kienle HM, 2007, 4TH IEEE INTERNATIONAL WORKSHOP ON VISUALIZING SOFTWARE FOR UNDERSTANDING AND ANALYSIS, PROCEEDINGS, P2, DOI 10.1109/VISSOF.2007.4290693
  • [10] Perturbations of Moore-Penrose Metric Generalized Inverses of Linear Operators in Banach Spaces
    Ma, Hai Feng
    Sun, Shuang
    Wang, Yu Wen
    Zheng, Wen Jing
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (07) : 1109 - 1124