Quantitative assessment of the impact of second phase particle arrangement on damage and fracture anisotropy

被引:58
作者
Hannard, F. [1 ]
Simar, A. [1 ]
Maire, E. [2 ]
Pardoen, T. [1 ]
机构
[1] Catholic Univ Louvain, Inst Mech Mat & Civil Engn, B-1348 Louvain La Neuve, Belgium
[2] INSA Lyon, MATEIS, UMR5510, F-69621 Villeurbanne, France
关键词
X-ray tomography; Ductile damage; Anisotropy; Aluminium alloys; DUCTILE FRACTURE; ALUMINUM-ALLOY; VOID GROWTH; COALESCENCE; CLUSTERS; MODEL;
D O I
10.1016/j.actamat.2018.02.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fracture anisotropy of the three aluminium alloys Al 6056, Al 6061 and Al 6005A has been characterized in tension. In the three alloys, the onset of yielding and strain hardening behaviour do not significantly depend on the loading direction. However, while the fracture strain is close to isotropic in the alloys Al 6061 and Al 6005A, the alloy Al 6056 exhibits clear fracture anisotropy. In situ tensile tests in X-ray tomography reveal that there exist two coalescence stages that include intra-and inter-cluster coalescence. A quantitative approach is proposed to relate the propensity to fracture anisotropy to a simple microscopic parameter characterizing the degree of anisotropy in the spatial distribution of second phase particles. The new indicator which quantifies the degree of connectivity or percolation between clusters is successfully assessed for the three Al alloys. (c) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:456 / 466
页数:11
相关论文
共 38 条
[1]  
Achon P., 1994, THESIS
[2]   Anisotropy of intermetallic particle cracking damage evolution in an Al-Mg-Si base wrought aluminum alloy under uniaxial compression [J].
Agarwal, H ;
Gokhale, AM ;
Graham, S ;
Horstemeyer, MF .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (11) :3443-3448
[3]   Modeling the ductile fracture process of void coalescence by void-sheet formation [J].
Bandstra, JP ;
Koss, DA .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 319 :490-495
[4]   Ductile Fracture by Void Growth to Coalescence [J].
Benzerga, A. Amine ;
Leblond, Jean-Baptiste .
ADVANCES IN APPLIED MECHANICS, VOL 44, 2010, 44 :169-305
[5]   Anisotropic ductile fracture Part I: experiments [J].
Benzerga, AA ;
Besson, J ;
Pineau, A .
ACTA MATERIALIA, 2004, 52 (15) :4623-4638
[6]   Plastic potentials for anisotropic porous solids [J].
Benzerga, AA ;
Besson, J .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2001, 20 (03) :397-434
[7]   CAVITY FORMATION FROM INCLUSIONS IN DUCTILE FRACTURE OF A508-STEEL [J].
Beremin, FM .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (05) :723-731
[8]   On the influence of particle distribution and reverse loading on damage mechanisms of ductile steels [J].
Bouchard, P. O. ;
Bourgeon, L. ;
Lachapele, H. ;
Maire, E. ;
Verdu, C. ;
Forestier, R. ;
Loge, R. E. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 496 (1-2) :223-233
[9]   CLUSTERS, PLASTICITY AND DAMAGE - A MISSING LINK [J].
BRECHET, YJM .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 175 (1-2) :63-69
[10]   Damage identification for anisotropic sheet-metals using a non-local damage model [J].
Brunet, M ;
Morestin, F ;
Walter, H .
INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2004, 13 (01) :35-57