A Quasi-optimal Spectral Method for Turbulent Flows in Non-periodic Geometries

被引:0
|
作者
Auteri, Franco [1 ]
机构
[1] Politecn Milan, Dipartimento Ingn Aerospaziale, Milan, Italy
来源
PROGRESS IN TURBULENCE V | 2014年 / 149卷
关键词
D O I
10.1007/978-3-319-01860-7_37
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, a quasi-optimal spectral solver for the incompressible Navier-Stokes equations is proposed which is able to treat nonperiodic geometries by construction. The method is based on a fractional-step time discretization recently proposed by Guermond andMinev. A Chebyshev-Galerkin spatial discretization is adopted to satisfy the LBB condition while maintaining an efficient treatment of the linear and nonlinear, dealiased, terms. A careful construction of the algorithm allows the computational complexity to grow as CN3 logN in 3D.
引用
收藏
页码:227 / 231
页数:5
相关论文
共 50 条
  • [1] Finite spectral method for non-periodic problems
    Wang, JP
    COMPUTATIONAL FLUID DYNAMICS 2000, 2001, : 805 - 806
  • [2] A BUFFERED FOURIER SPECTRAL METHOD FOR NON-PERIODIC PDE
    Fu, Huankun
    Liu, Chaoqun
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (02) : 460 - 478
  • [3] New method of spectral analysis of non-periodic curves
    Levy, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1934, 199 : 1031 - 1033
  • [4] Accelerated boundary integral method for multiphase flow in non-periodic geometries
    Kumar, Amit
    Graham, Michael D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (20) : 6682 - 6713
  • [5] A windowing method for periodic inflow/outflow boundary treatment of non-periodic flows
    Schlatter, P
    Adams, NA
    Kleiser, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (02) : 505 - 535
  • [6] Finite spectral method based on non-periodic Fourier transform
    Wang, JP
    COMPUTERS & FLUIDS, 1998, 27 (5-6) : 639 - 644
  • [7] Finite spectral method based on non-periodic Fourier transform
    Wang, Jian-Ping
    Computers and Fluids, 1998, 27 (5-6): : 639 - 644
  • [8] A non-periodic spectral method with application to nonlinear water waves
    Agnon, Y
    Bingham, HB
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1999, 18 (03) : 527 - 534
  • [9] Method of Quasi-Optimal Synthesis Using Invariants
    Kostoglotov, Andrey Aleksandrovich
    Lazarenko, Sergey Valerievich
    Kuznetcov, Anton Aleksandrovich
    Lyashchenko, Zoya Vladimirovna
    2016 3RD INTERNATIONAL CONFERENCE ON MECHANICS AND MECHATRONICS RESEARCH (ICMMR 2016), 2016, 77
  • [10] Time spectral method for non-periodic fluid-structure coupling problems
    Yang T.
    Bai J.
    Shi Y.
    Yang Y.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2018, 39 (05):