Measurement of thermal expansion coefficient of INVAR foil using atomic force microscopy

被引:5
|
作者
Lin, Jing-Jenn [1 ]
Wu, You-Lin [2 ]
Yang, Cheng-Fu [3 ]
Wang, Wei-Wen [1 ]
机构
[1] Natl Chi Nan Univ, Dept Appl Mat & Optoelect Engn, Taipei, Taiwan
[2] Natl Chi Nan Univ, Dept Elect Engn, Taipei, Taiwan
[3] Natl Univ Kaohsiung, Dept Chem & Mat Engn, Kaohsiung, Taiwan
关键词
Linear coefficient of thermal expansion; INVAR; Atomic force microscopy; STRESS; FILMS;
D O I
10.1016/j.measurement.2013.09.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The production of organic light emitting diode (OLED) displays depends on the use of the low coefficient of thermal expansion (CTE) of INVAR foils as the shadow mask. The high-resolution of the smartphone displays requires increasingly thin INVAR in a two-step etching process. However, it is difficult to measure CTE for very thin metal foils. A simple method is developed to measure the linear CTE of the INVAR foil using atomic force microscopy (AFM). This method uses a focus-ion-beam (FIB) to etch a 5000 mu m trench on the INVAR foil. The thermal drift of the system is calibrated from AFM images, and the average linear CTE of the INVAR foil is then calculated from the displacements of two side end points of the trench on the foil during temperature variation. The linear CTE obtained by the proposed method is quite close to the value of the bulk INVAR provided by the manufacturer. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:373 / 378
页数:6
相关论文
共 50 条
  • [1] LINEAR COEFFICIENT OF THERMAL EXPANSION OF POROUS ANODIC ALUMINA THIN FILMS FROM ATOMIC FORCE MICROSCOPY
    Zhang, X. Richard
    Fisher, T. S.
    Raman, A.
    Sands, T. D.
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2009, 13 (04) : 243 - 252
  • [2] Piezoelectric hysteresis measurement using atomic force microscopy
    Shin, H
    Shin, JK
    Hong, SB
    Jeon, JU
    Song, HW
    Hong, JI
    No, K
    INTEGRATED FERROELECTRICS, 2001, 38 (1-4) : 675 - 682
  • [3] Effects of friction stir welding on the coefficient of thermal expansion of Invar 36
    Jasthi, Bharat K.
    Howard, Stanley M.
    Allen, Casey D.
    Arbegaset, William J.
    FRICTION STIR WELDING AND PROCESSING IV, 2007, : 303 - +
  • [4] Measurement of nanomechanical properties of biomolecules using atomic force microscopy
    Kurland, Nicholas E.
    Drira, Zouheir
    Yadavalli, Vamsi K.
    MICRON, 2012, 43 (2-3) : 116 - 128
  • [5] Local elasticity measurement on polymers using atomic force microscopy
    Nie, HY
    Motomatsu, M
    Mizutani, W
    Tokumoto, H
    THIN SOLID FILMS, 1996, 273 (1-2) : 143 - 148
  • [6] In-situ measurement of thermal expansion in Cu/SiO2 2 hybrid structures using atomic force microscopy at elevated temperatures
    Lin, Huai-En
    Tran, Dinh-Phuc
    Chiu, Wei-Lan
    Chang, Hsiang-Hung
    Chen, Chih
    APPLIED SURFACE SCIENCE, 2024, 662
  • [7] Measurement and analysis of cellular viscoelastic properties using atomic force microscopy
    Dang, Dan
    Li, Mi
    Xiang, Rongwu
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (15): : 1610 - 1619
  • [8] Surface potential measurement by atomic force microscopy using quartz resonator
    Heike, S
    Hashizume, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (3B): : 1996 - 1999
  • [9] The measurement of exonuclease activities by atomic force microscopy
    K. Hori
    T. Takahashi
    T. Okada
    European Biophysics Journal, 1998, 27 : 63 - 68
  • [10] Measurement of frictional forces in atomic force microscopy
    Choi, D.
    Hwang, W.
    NANOSCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2007, 121-123 : 851 - 854