Most Tensor Problems Are NP-Hard

被引:833
作者
Hillar, Christopher J. [1 ]
Lim, Lek-Heng [2 ]
机构
[1] Math Sci Res Inst, Berkeley, CA 94720 USA
[2] Univ Chicago, Computat & Appl Math Initiat, Dept Stat, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Algorithms; Theory; Numerical multilinear algebra; tensor rank; tensor eigenvalue; tensor singular value; tensor spectral norm; system of multilinear equations; hyperdeterminants; symmetric tensors; nonnegative definite tensors; bivariate matrix polynomials; NP-hardness; #P-hardness; VNP-hardness; undecidability; polynomial time approximation schemes; UPPER-BOUNDS; COMPLEXITY; APPROXIMATION; EIGENVALUES; SYSTEMS; CUT; DECOMPOSITION; ENTANGLEMENT; ALGORITHMS; NUMBERS;
D O I
10.1145/2512329
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list includes: determining the feasibility of a system of bilinear equations, deciding whether a 3-tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or the spectral norm; and determining the rank or best rank-1 approximation of a 3-tensor. Furthermore, we show that restricting these problems to symmetric tensors does not alleviate their NP-hardness. We also explain how deciding nonnegative definiteness of a symmetric 4-tensor is NP-hard and how computing the combinatorial hyperdeterminant is NP-, #P-, and VNP-hard.
引用
收藏
页数:39
相关论文
共 131 条
[1]   NP-hardness of deciding convexity of quartic polynomials and related problems [J].
Ahmadi, Amir Ali ;
Olshevsky, Alex ;
Parrilo, Pablo A. ;
Tsitsiklis, John N. .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :453-476
[2]   TURANS GRAPH THEOREM [J].
AIGNER, M .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (09) :808-816
[3]   Phylogenetic ideals and varieties for the general Markov model [J].
Allman, Elizabeth S. ;
Rhodes, John A. .
ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (02) :127-148
[4]   Approximating the cut-norm via Grothendieck's inequality [J].
Alon, N ;
Naor, A .
SIAM JOURNAL ON COMPUTING, 2006, 35 (04) :787-803
[5]  
[Anonymous], 2013, HDB LINEAR ALGEBRA
[6]  
[Anonymous], 2008, Functions of matrices: theory and computation
[7]  
[Anonymous], 1970, Aequat. Math., DOI DOI 10.1007/BF01844169
[8]  
[Anonymous], 2001, Numerical computing with IEEE floating point arithmetic
[9]  
[Anonymous], 2005, P 22 INT C MACH LEAR, DOI DOI 10.1145/1102351.1102451
[10]  
[Anonymous], 2000, TEXT THEORET COMP S