Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry

被引:646
作者
Feng, Xuning [1 ]
Fang, Mou [2 ]
He, Xiangming [1 ,2 ]
Ouyang, Minggao [1 ]
Lu, Languang [1 ]
Wang, Hao [2 ]
Zhang, Mingxuan [1 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
关键词
Lithium ion battery; Thermal runaway; Large format; Extended volume accelerating rate calorimetry; LINI1/3MN1/3CO1/3O2 CATHODE MATERIAL; HIGH-POWER; CALENDAR LIFE; SELF-DISCHARGE; SAFETY; LI(NI1/3CO1/3MN1/3)O-2; TEMPERATURE; STABILITY; CELLS; ELECTROLYTE;
D O I
10.1016/j.jpowsour.2014.01.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, the thermal runaway features of a 25 Ah large format prismatic lithium ion battery with Li(NixCoyMnz)O-2 (NCM) cathode are evaluated using the extended volume-accelerating rate calorimetry (EV-ARC). 4 thermocouples are set at different positions of the battery. The temperature inside the battery is 870 degrees C or so, much higher than that outside the battery. The temperature difference is calculated from the recorded data. The temperature difference within the battery stays lower than 1 degrees C for 97% of the test period, while it rises to its highest, approximately 520 degrees C, when thermal runaway happens. The voltage of the battery is also measured during the test. It takes 15-40 s from the sharp drop of voltage to the instantaneous rise of temperature. Such a time interval is beneficial for early warning of the thermal runaway. Using a pulse charge/discharge profile, the internal resistance is derived from the quotient of the pulse voltage and the current during the ARC test. The internal resistance of the battery increases slowly from 20 m Omega to 60 m Omega before thermal runaway, while it rises to 370 m Omega when thermal runaway happens indicating the loss of the integrity of the separator or the battery swell. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:294 / 301
页数:8
相关论文
共 65 条
  • [1] Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications
    Amine, K
    Liu, J
    Kang, S
    Belharouak, I
    Hyung, Y
    Vissers, D
    Henriksen, G
    [J]. JOURNAL OF POWER SOURCES, 2004, 129 (01) : 14 - 19
  • [2] High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells
    Amine, K
    Liu, J
    Belharouak, I
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) : 669 - 673
  • [3] [Anonymous], 2010, ACC RAT CAL EV ARC O
  • [4] [Anonymous], 2013, COMMUNICATION
  • [5] Thermal reactions between delithiated lithium nickelate and electrolyte solutions
    Arai, H
    Tsuda, M
    Saito, K
    Hayashi, M
    Sakurai, Y
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) : A401 - A406
  • [6] Battery separators
    Arora, P
    Zhang, ZM
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4419 - 4462
  • [7] A Critical Review of Thermal Issues in Lithium-Ion Batteries
    Bandhauer, Todd M.
    Garimella, Srinivas
    Fuller, Thomas F.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : R1 - R25
  • [8] Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications
    Belharouak, I
    Sun, YK
    Liu, J
    Amine, K
    [J]. JOURNAL OF POWER SOURCES, 2003, 123 (02) : 247 - 252
  • [9] On safety of lithium-ion cells
    Biensan, P
    Simon, B
    Pérès, JP
    de Guibert, A
    Broussely, M
    Bodet, JM
    Perton, F
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 906 - 912
  • [10] Thermal stability of LiPF6-EC:EMC electrolyte for lithium ion batteries
    Botte, GG
    White, RE
    Zhang, ZM
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 570 - 575