Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators

被引:52
作者
Sato, S. A. [1 ]
Yabana, K. [1 ,2 ]
Shinohara, Y. [3 ]
Otobe, T. [4 ]
Lee, K. -M. [5 ]
Bertsch, G. F. [6 ,7 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan
[2] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
[3] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany
[4] JAEA, Adv Photon Res Ctr, Kyoto 6190615, Japan
[5] Inst Basic Sci, Ctr Relativist Laser Sci, Gwangju 500712, South Korea
[6] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[7] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
关键词
FEMTOSECOND; ABLATION; DIELECTRICS; BREAKDOWN; DYNAMICS; FIELD;
D O I
10.1103/PhysRevB.92.205413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate the energy deposition by very short laser pulses in SiO2 (alpha-quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.
引用
收藏
页数:6
相关论文
共 42 条
[1]   Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum [J].
Amoruso, S ;
Ausanio, G ;
Bruzzese, R ;
Vitiello, M ;
Wang, X .
PHYSICAL REVIEW B, 2005, 71 (03)
[2]   Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films [J].
Balling, P. ;
Schou, J. .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (03)
[3]   A simple effective potential for exchange [J].
Becke, Axel D. ;
Johnson, Erin R. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (22)
[4]   FEMTOSECOND ELECTRONIC HEAT-TRANSPORT DYNAMICS IN THIN GOLD-FILMS [J].
BRORSON, SD ;
FUJIMOTO, JG ;
IPPEN, EP .
PHYSICAL REVIEW LETTERS, 1987, 59 (17) :1962-1965
[5]   Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse [J].
Brouwer, Nils ;
Rethfeld, Baerbel .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (11) :C28-C35
[6]  
Chichkov BN, 1996, APPL PHYS A-MATER, V63, P109, DOI 10.1007/BF01567637
[7]   Damage and ablation thresholds of fused-silica in femtosecond regime [J].
Chimier, B. ;
Uteza, O. ;
Sanner, N. ;
Sentis, M. ;
Itina, T. ;
Lassonde, P. ;
Legare, F. ;
Vidal, F. ;
Kieffer, J. C. .
PHYSICAL REVIEW B, 2011, 84 (09)
[8]   Modeling ultrashort-pulse laser ablation of dielectric materials [J].
Christensen, B. H. ;
Balling, P. .
PHYSICAL REVIEW B, 2009, 79 (15)
[9]   Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses -: art. no. 026402 [J].
Doumy, G ;
Quéré, F ;
Gobert, O ;
Perdrix, M ;
Martin, P ;
Audebert, P ;
Gauthier, JC ;
Geindre, JP ;
Wittmann, T .
PHYSICAL REVIEW E, 2004, 69 (02) :026402-1
[10]   ELECTRON THERMALIZATION IN GOLD [J].
FANN, WS ;
STORZ, R ;
TOM, HWK ;
BOKOR, J .
PHYSICAL REVIEW B, 1992, 46 (20) :13592-13595