On locally finite varieties with undecidable equational theory

被引:5
作者
Jackson, M [1 ]
机构
[1] Univ Tasmania, Hobart, Tas, Australia
关键词
pseudurecursive varieties; word problem; membership problem; decidability; equational theory;
D O I
10.1007/s00012-002-8169-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 6
页数:6
相关论文
共 48 条
[41]   A finite basis theorem for residually finite, congruence meet-semidistributive varieties [J].
Willard, R .
JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (01) :187-200
[42]   On varieties of modular ortholattices that are generated by their finite-dimensional members [J].
Herrmann, Christian ;
Roddy, Micheale S. .
ALGEBRA UNIVERSALIS, 2014, 72 (04) :349-357
[43]   An extension of Willard's finite basis theorem: Congruence meet-semidistributive varieties of finite critical depth [J].
Baker, KA ;
McNulty, GF ;
Wang, J .
ALGEBRA UNIVERSALIS, 2005, 52 (2-3) :289-302
[44]   An extension of Willard’s Finite Basis Theorem: Congruence meet-semidistributive varieties of finite critical depth [J].
Kirby A. Baker ;
George F. McNulty ;
Ju Wang .
algebra universalis, 2005, 52 :289-302
[45]   Crisp-Determinization of Weighted Tree Automata over Additively Locally Finite and Past-Finite Monotonic Strong Bimonoids Is Decidable [J].
Droste, Manfred ;
Fulop, Zoltan ;
Koszo, David ;
Vogler, Heiko .
DESCRIPTIONAL COMPLEXITY OF FORMAL SYSTEMS, DCFS 2020, 2020, 12442 :39-51
[46]   Obtaining Finite Local Theory Axiomatizations via Saturation [J].
Horbach, Matthias ;
Sofronie-Stokkermans, Viorica .
FRONTIERS OF COMBINING SYSTEMS (FROCOS 2013), 2013, 8152 :198-213
[47]   Towards the decidability of the theory of modules over finite commutative rings [J].
Puninski, Gena ;
Toffalori, Carlo .
ANNALS OF PURE AND APPLIED LOGIC, 2009, 159 (1-2) :49-70