On locally finite varieties with undecidable equational theory

被引:5
作者
Jackson, M [1 ]
机构
[1] Univ Tasmania, Hobart, Tas, Australia
关键词
pseudurecursive varieties; word problem; membership problem; decidability; equational theory;
D O I
10.1007/s00012-002-8169-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 6
页数:6
相关论文
共 48 条
[31]   First-Order Frege Theory is Undecidable [J].
Warren Goldfarb .
Journal of Philosophical Logic, 2001, 30 :613-616
[32]   Secrecy of cryptographic protocols under equational theory [J].
Houmani, H. ;
Mejri, M. ;
Fujita, H. .
KNOWLEDGE-BASED SYSTEMS, 2009, 22 (03) :160-173
[33]   The equational theory of prebisimilarity over basic CCS with divergence [J].
Aceto, Luca ;
Capobianco, Silvio ;
Ingolfsdottir, Anna ;
Luttik, Bas .
INFORMATION PROCESSING LETTERS, 2008, 108 (05) :284-289
[34]   Decidability of bisimulation equivalence for equational graphs of finite out-degree [J].
Sénizergues, G .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :120-129
[35]   An Equational Theory for Weak Bisimulation via Generalized Parameterized Coinduction [J].
Zakowski, Yannick ;
He, Paul ;
Hur, Chung-Kil ;
Zdancewic, Steve .
CPP '20: PROCEEDINGS OF THE 9TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, 2020, :71-84
[37]   Polynomial-time Equational Theory for Lattices with Unary Operators [J].
Van Alten, C. J. .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2025,
[38]   The equational theory of a nontrivial discriminator variety is co-NP-hard [J].
Burris, S .
ALGEBRA UNIVERSALIS, 2005, 52 (04) :487-494
[39]   Call-By-Push-Value in Coq: Operational, Equational, and Denotational Theory [J].
Forster, Yannick ;
Schaefer, Steven ;
Spies, Simon ;
Stark, Kathrin .
PROCEEDINGS OF THE 8TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS (CPP' 19), 2019, :118-131
[40]   The equational theory of a nontrivial discriminator variety is co-NP-hard [J].
Stanley Burris .
algebra universalis, 2005, 52 :487-494