On locally finite varieties with undecidable equational theory

被引:5
作者
Jackson, M [1 ]
机构
[1] Univ Tasmania, Hobart, Tas, Australia
关键词
pseudurecursive varieties; word problem; membership problem; decidability; equational theory;
D O I
10.1007/s00012-002-8169-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 6
页数:6
相关论文
共 48 条
[22]   On connection between the word problem and decidability of the equational theory [J].
V. Yu. Popov .
Siberian Mathematical Journal, 2000, 41 :921-923
[23]   Decidability of the Equational Theory of the Continuous Geometry CG(F) [J].
Harding, John .
JOURNAL OF PHILOSOPHICAL LOGIC, 2013, 42 (03) :461-465
[24]   The multiplicative fragment of the Yanov equational theory [J].
Dolinka, I .
THEORETICAL COMPUTER SCIENCE, 2003, 301 (1-3) :417-425
[25]   On the Equational Theory of Lattice-Based Algebras for Layered Graphs [J].
Yu, Zhe ;
Zhan, Hao ;
Wang, Yiheng ;
Lin, Zhe ;
Liang, Fei .
AXIOMS, 2025, 14 (04)
[26]   Nonfinite axiomatizability of the equational theory of shuffle [J].
Zoltán Ésik ;
Michael Bertol .
Acta Informatica, 1998, 35 :505-539
[27]   A note on the equational theory of modular ortholattices [J].
Herrmann, C ;
Roddy, MS .
ALGEBRA UNIVERSALIS, 2000, 44 (1-2) :165-168
[28]   A note on the equational theory of modular ortholattices [J].
Christian Herrmann ;
Michael S. Roddy .
algebra universalis, 2000, 44 :165-168
[29]   A residually finite associative algebra with an undecidable word problem [J].
Belegradek O.V. .
Algebra and Logic, 2000, 39 (4) :252-258
[30]   First-order Frege theory is undecidable [J].
Goldfarb, W .
JOURNAL OF PHILOSOPHICAL LOGIC, 2001, 30 (06) :613-616