On locally finite varieties with undecidable equational theory

被引:5
作者
Jackson, M [1 ]
机构
[1] Univ Tasmania, Hobart, Tas, Australia
关键词
pseudurecursive varieties; word problem; membership problem; decidability; equational theory;
D O I
10.1007/s00012-002-8169-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 6
页数:6
相关论文
共 48 条
[11]   On equational theories of varieties of anticommutative rings [J].
V. Yu. Popov .
Mathematical Notes, 1999, 65 :188-201
[12]   An equational theory for a nilpotent A-loop [J].
A. V. Kowalski ;
V. I. Ursu .
Algebra and Logic, 2010, 49 :326-339
[13]   AN EQUATIONAL THEORY FOR A NILPOTENT A-LOOP [J].
Kowalski, A. V. ;
Ursu, V. I. .
ALGEBRA AND LOGIC, 2010, 49 (04) :326-339
[14]   An equational theory for trilattices [J].
Biedermann, K .
ALGEBRA UNIVERSALIS, 1999, 42 (04) :253-268
[15]   An equational theory for trilattices [J].
K. Biedermann .
algebra universalis, 1999, 42 :253-268
[16]   Decidability of Equational Theories of Coverings of Semigroup Varieties [J].
V. Yu. Popov .
Siberian Mathematical Journal, 2001, 42 :1132-1141
[17]   Decidability of equational theories of coverings of semigroup varieties [J].
Popov, VY .
SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (06) :1132-1141
[18]   The equational theory of regular words [J].
Bloom, SL ;
Ésik, Z .
INFORMATION AND COMPUTATION, 2005, 197 (1-2) :55-89
[19]   Equational theories for classes of finite semigroups [J].
Popov V.Y. .
Algebra and Logic, 2001, 40 (1) :55-66
[20]   The equational theory of Kleene lattices [J].
Andreka, Hajnal ;
Mikulas, Szabolcs ;
Nemeti, Istvan .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (52) :7099-7108