Multivariate linear regression with missing values

被引:8
|
作者
Beyad, Yaser [1 ]
Maeder, Marcel [1 ]
机构
[1] Univ Newcastle, Dept Chem, Newcastle, NSW 2308, Australia
关键词
Linear regression; Missing values; RESOLUTION; ELEMENTS; PARAFAC;
D O I
10.1016/j.aca.2013.08.027
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This contribution presents and discusses an efficient algorithm for multivariate linear regression analysis of data sets with missing values. The algorithm is based on the insight that multivariate linear regression can be formulated as a set of individual univariate linear regressions. All available information is used and the calculations are explicit. The only restriction is that the independent variable matrix has to be non-singular. There is no need for imputation of interpolated or otherwise guessed values which require subsequent iterative refinement. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 41
页数:4
相关论文
共 50 条
  • [31] COMMENTS ON THE WEIGHTED REGRESSION APPROACH TO MISSING VALUES
    CONNIFFE, D
    ECONOMIC AND SOCIAL REVIEW, 1983, 14 (04) : 259 - 272
  • [32] Nonparametric regression with discrete covariate and missing values
    Chen, Song Xi
    Tang, Cheng Yong
    STATISTICS AND ITS INTERFACE, 2011, 4 (04) : 463 - 474
  • [33] An Augmented Regression Model for Tensors With Missing Values
    Wang, Feng
    Gahrooei, Mostafa Reisi
    Zhong, Zhen
    Tang, Tao
    Shi, Jianjun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 2968 - 2984
  • [34] On the impact of missing outcomes in linear regression
    Alarcon-Bustamante, Eduardo
    Varas, Ines M.
    Martin, Ernesto San
    CHILEAN JOURNAL OF STATISTICS, 2023, 14 (01): : 26 - 35
  • [35] ESTIMATION OF MISSING VALUES IN LINEAR MODELS
    Tripodis, Yorghos
    Neerchal, Nagaraj K.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2014, 39 (02) : 109 - 123
  • [36] Optimal product designs for multivariate regression with missing terms
    Dette, H
    Roder, I
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (02) : 195 - 208
  • [37] Efficiency comparisons in multivariate multiple regression with missing outcomes
    Rotnitzky, A
    Holcroft, CA
    Robins, JM
    JOURNAL OF MULTIVARIATE ANALYSIS, 1997, 61 (01) : 102 - 128
  • [38] Recurrent Imputation for Multivariate Time Series with Missing Values
    Suo, Qiuling
    Yao, Liuyi
    Xun, Guangxu
    Sun, Jianhui
    Zhang, Aidong
    2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 562 - 564
  • [39] A statistical emulator for multivariate model outputs with missing values
    Finazzi, Francesco
    Napier, Yoana
    Scott, Marian
    Hills, Alan
    Cameletti, Michela
    ATMOSPHERIC ENVIRONMENT, 2019, 199 : 415 - 422
  • [40] NEW CONTROL CHART FOR MULTIVARIATE DATA WITH MISSING VALUES
    FURUTANI, H
    YAMAMOTO, K
    OGURA, H
    KITAZOE, Y
    COMPUTERS AND BIOMEDICAL RESEARCH, 1988, 21 (01): : 1 - 8