Accuracy of binned kernel functional approximations

被引:13
|
作者
GonzalezManteiga, W
SanchezSellero, C
Wand, MP
机构
[1] UNIV SANTIAGO DE COMPOSTELA, FAC MATEMAT, DEPT ESTADIST & INVEST OPERAT, E-15771 SANTIAGO DE COMPOSTELA, SPAIN
[2] UNIV NEW S WALES, AUSTRALIAN GRAD SCH MANAGEMENT, SYDNEY, NSW 2052, AUSTRALIA
关键词
bandwidth selection; binned kernel estimator; density estimation; kernel estimator;
D O I
10.1016/0167-9473(96)88030-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Virtually all common bandwidth selection algorithms are based on a certain type of kernel functional estimator. Such estimators can be computationally very expensive, so in practice they are often replaced by fast binned approximations. This is especially worthwhile when the bandwidth selection method involves iteration. Results for the accuracy of these approximations are derived and then used to provide an understanding of the number of binning grid points required to achieve a given level of accuracy. Our results apply to both univariate and multivariate settings. Multivariate contexts are of particular interest since the cost due to having a higher number of grid points can be quite significant.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields
    Harel, Michel
    Lenain, Jean-Francois
    Ngatchou-Wandji, Joseph
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (02) : 296 - 321
  • [32] Lower bounds for separable approximations of the Hilbert kernel
    Oseledets, I. V.
    SBORNIK MATHEMATICS, 2007, 198 (3-4) : 425 - 432
  • [33] Best Approximations for the Cauchy Kernel on the Real Axis
    Savchuk, V. M.
    Chaichenko, S. O.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 66 (11) : 1731 - 1741
  • [34] Best Approximations for the Cauchy Kernel on the Real Axis
    V. M. Savchuk
    S. O. Chaichenko
    Ukrainian Mathematical Journal, 2015, 66 : 1731 - 1741
  • [35] Kernel approximations for W-operator learning
    Montagner, Igor S.
    Hirata, Nina S. T.
    Hirata, Roberto, Jr.
    Canu, Stephane
    2016 29TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2016, : 386 - 393
  • [36] The implementation of binned Kernel density estimation to determine open clusters’ proper motions: validation of the method
    R. Priyatikanto
    M. I. Arifyanto
    Astrophysics and Space Science, 2015, 355 : 161 - 169
  • [37] Finding global minima via kernel approximations
    Rudi, Alessandro
    Marteau-Ferey, Ulysse
    Bach, Francis
    MATHEMATICAL PROGRAMMING, 2025, 209 (1-2) : 703 - 784
  • [38] Sparse Kernel Approximations for Efficient Classification and Detection
    Vedaldi, Andrea
    Zisserman, Andrew
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2320 - 2327
  • [39] Approximations in Functional Analysis
    Lowen R.
    Sioen M.
    Results in Mathematics, 2000, 37 (3-4) : 345 - 372
  • [40] ON THE ACCURACY OF THE RAYLEIGH-SCHRODINGER APPROXIMATIONS
    LIMAYE, BV
    NAIR, MT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (02) : 413 - 431