ACDC: Automated Cell Detection and Counting for Time-Lapse Fluorescence Microscopy

被引:8
作者
Rundo, Leonardo [1 ,2 ]
Tangherloni, Andrea [3 ,4 ,5 ]
Tyson, Darren R. [6 ]
Betta, Riccardo [7 ]
Militello, Carmelo [8 ]
Spolaor, Simone [7 ]
Nobile, Marco S. [9 ,10 ]
Besozzi, Daniela [7 ]
Lubbock, Alexander L. R. [6 ]
Quaranta, Vito [6 ]
Mauri, Giancarlo [7 ,10 ]
Lopez, Carlos F. [6 ]
Cazzaniga, Paolo [10 ,11 ]
机构
[1] Univ Cambridge, Dept Radiol, Cambridge CB2 0QQ, England
[2] Univ Cambridge, Canc Res UK Cambridge Ctr, Cambridge CB2 0RE, England
[3] Univ Cambridge, Dept Haematol, Cambridge CB2 0XY, England
[4] Wellcome Trust Sanger Inst, Wellcome Trust Genome Campus, Hinxton CB10 1HH, England
[5] Stem Cell Inst, Med Res Council Cambridge, Wellcome Trust, Cambridge CB2 0AW, England
[6] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37232 USA
[7] Univ Milano Bicocca, Dept Informat Syst & Commun, I-20126 Milan, Italy
[8] Italian Natl Res Council, Inst Mol Bioimaging & Physiol, I-90015 Cefalu, PA, Italy
[9] Eindhoven Univ Technol, Dept Ind Engn & Innovat Sci, NL-5612 AZ Eindhoven, Netherlands
[10] SYSBIO ISBEIT Ctr Syst Biol, I-20126 Milan, Italy
[11] Univ Bergamo, Dept Human & Social Sci, I-24129 Bergamo, Italy
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 18期
基金
美国国家卫生研究院;
关键词
bioimage informatics; time-lapse microscopy; fluorescence imaging; cell counting; nuclei segmentation; BIOIMAGE INFORMATICS; IMAGE SEGMENTATION; DYNAMICS; PATTERNS; DISTANCE; NUCLEI; AREA;
D O I
10.3390/app10186187
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application: Novel method for Automated Cell Detection and Counting (ACDC) in time-lapse fluorescence microscopy. Advances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, named Automated Cell Detection and Counting (ACDC), designed for activity detection of fluorescent labeled cell nuclei in time-lapse microscopy. ACDC overcomes the limitations of the literature methods, by first applying bilateral filtering on the original image to smooth the input cell images while preserving edge sharpness, and then by exploiting the watershed transform and morphological filtering. Moreover, ACDC represents a feasible solution for the laboratory practice, as it can leverage multi-core architectures in computer clusters to efficiently handle large-scale imaging datasets. Indeed, our Parent-Workers implementation of ACDC allows to obtain up to a3.7xspeed-up compared to the sequential counterpart. ACDC was tested on two distinct cell imaging datasets to assess its accuracy and effectiveness on images with different characteristics. We achieved an accurate cell-count and nuclei segmentation without relying on large-scale annotated datasets, a result confirmed by the average Dice Similarity Coefficients of76.84and88.64and the Pearson coefficients of0.99and0.96, calculated against the manual cell counting, on the two tested datasets.
引用
收藏
页数:22
相关论文
共 81 条
[1]   Machine learning approach of automatic identification and counting of blood cells [J].
Alam, Mohammad Mahmudul ;
Islam, Mohammad Tariqul .
HEALTHCARE TECHNOLOGY LETTERS, 2019, 6 (04) :103-108
[2]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[3]  
[Anonymous], 2002, Fundamentals of digital image processing
[4]  
[Anonymous], 2012, Advances in neural information processing systems, DOI DOI 10.5555/2999325.2999452
[5]  
[Anonymous], 2018, CELERY PROJECT CELER
[6]   A simple and efficient architecture for trainable activation functions [J].
Apicella, Andrea ;
Isgro, Francesco ;
Prevete, Roberto .
NEUROCOMPUTING, 2019, 370 :1-15
[7]   Transfer Learning for Cell Nuclei Classification in Histopathology Images [J].
Bayramoglu, Neslihan ;
Heikkila, Janne .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 :532-539
[8]   ilastik: interactive machine learning for (bio) image analysis [J].
Berg, Stuart ;
Kutra, Dominik ;
Kroeger, Thorben ;
Straehle, Christoph N. ;
Kausler, Bernhard X. ;
Haubold, Carsten ;
Schiegg, Martin ;
Ales, Janez ;
Beier, Thorsten ;
Rudy, Markus ;
Eren, Kemal ;
Cervantes, Jaime I. ;
Xu, Buote ;
Beuttenmueller, Fynn ;
Wolny, Adrian ;
Zhang, Chong ;
Koethe, Ullrich ;
Hamprecht, Fred A. ;
Kreshuk, Anna .
NATURE METHODS, 2019, 16 (12) :1226-1232
[9]  
Beucher S., 1993, Mathematical Morphology in Image Processing, P433, DOI DOI 10.1201/9781482277234-12
[10]  
Bland JM, 1999, STAT METHODS MED RES, V8, P135, DOI 10.1177/096228029900800204