Extraction and identification of noise patterns for ultracold atoms in an optical lattice

被引:13
作者
Cao, Shuyang [1 ]
Tang, Pengju [1 ]
Guo, Xinxin [1 ]
Chen, Xuzong [1 ]
Zhang, Wei [2 ]
Zhou, Xiaoji [1 ,3 ]
机构
[1] Peking Univ, Dept Elect, State Key Lab Adv Opt Commun Syst & Network, Beijing 100871, Peoples R China
[2] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
All Open Access; Gold; Green;
D O I
10.1364/OE.27.012710
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To extract useful information about quantum effects in cold atom experiments, one central task is to identify the intrinsic fluctuations from extrinsic system noises of various kinds. As a data processing method, principal component analysis can decompose fluctuations in experimental data into eigenmodes, and give a chance to separate noises originated from different physical sources. In this paper, we demonstrate for Bose-Einstein condensates in one-dimensional optical lattices that the principal component analysis can be applied to time-of-flight images to successfully separate and identify noises from different origins of leading contribution, and can help to reduce or even eliminate noises via corresponding data processing procedures. The attribution of noise modes to their physical origins is also confirmed by numerical analysis within a mean-field theory. As the method does not rely on any a priori knowledge of the system properties, it is potentially applicable to the study of other quantum states and quantum critical regions. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:12710 / 12722
页数:13
相关论文
共 26 条
[1]   Super-resolution microscopy of single atoms in optical lattices [J].
Alberti, Andrea ;
Robens, Carsten ;
Alt, Wolfgang ;
Brakhane, Stefan ;
Karski, Michal ;
Reimann, Rene ;
Widera, Artur ;
Meschede, Dieter .
NEW JOURNAL OF PHYSICS, 2016, 18
[2]   Probing many-body states of ultracold atoms via noise correlations [J].
Altman, E ;
Demler, E ;
Lukin, MD .
PHYSICAL REVIEW A, 2004, 70 (01) :013603-1
[3]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[4]   102(h)over-bark Large Area Atom Interferometers [J].
Chiow, Sheng-wey ;
Kovachy, Tim ;
Chien, Hui-Chun ;
Kasevich, Mark A. .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[5]   Imaging the collective excitations of an ultracold gas using statistical correlations [J].
Dubessy, Romain ;
De Rossi, Camilla ;
Badr, Thomas ;
Longchambon, Laurent ;
Perrin, Helene .
NEW JOURNAL OF PHYSICS, 2014, 16
[6]   Spatial quantum noise interferometry in expanding ultracold atom clouds [J].
Fölling, S ;
Gerbier, F ;
Widera, A ;
Mandel, O ;
Gericke, T ;
Bloch, I .
NATURE, 2005, 434 (7032) :481-484
[7]   In situ observation of incompressible Mott-insulating domains in ultracold atomic gases [J].
Gemelke, Nathan ;
Zhang, Xibo ;
Hung, Chen-Lung ;
Chin, Cheng .
NATURE, 2009, 460 (7258) :995-U75
[8]   Probing pair-correlated fermionic atoms through correlations in atom shot noise [J].
Greiner, M ;
Regal, CA ;
Stewart, JT ;
Jin, DS .
PHYSICAL REVIEW LETTERS, 2005, 94 (11)
[9]  
Jolliffe L., 2002, Principal Component Analysis
[10]   FEATURE EXTRACTION - A SURVEY [J].
LEVINE, MD .
PROCEEDINGS OF THE IEEE, 1969, 57 (08) :1391-+