Boundedness of attractors in the complex Lorenz model

被引:32
作者
Toronov, VY
Derbov, VL
机构
[1] Department of Physics, Saratov State University, Saratov, 410071
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 03期
关键词
D O I
10.1103/PhysRevE.55.3689
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the properties of a principal fiber bundle associated with the complex Lorenz model phase space, we introduce a nonsingular base-space representation of the model. This representation enables us to find the surfaces bounding the attractors in the base space and reveal the interconnection between boundedness properties and peculiarities of the phase dynamics of complex variables.
引用
收藏
页码:3689 / 3692
页数:4
相关论文
共 15 条
[1]   THE REAL AND COMPLEX LORENZ EQUATIONS AND THEIR RELEVANCE TO PHYSICAL SYSTEMS [J].
FOWLER, AC ;
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICA D, 1983, 7 (1-3) :126-134
[2]   THE COMPLEX LORENTZ EQUATIONS [J].
FOWLER, AC ;
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICA D, 1982, 4 (02) :139-163
[3]  
GIBBON JD, 1982, PHYSICA D, V5, P108, DOI 10.1016/0167-2789(82)90053-7
[4]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME
[5]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[6]  
2
[7]   DETUNED LASERS AND THE COMPLEX LORENZ EQUATIONS - SUBCRITICAL AND SUPERCRITICAL HOPF BIFURCATIONS [J].
NING, CZ ;
HAKEN, H .
PHYSICAL REVIEW A, 1990, 41 (07) :3826-3837
[8]   GEOMETRICAL PHASE AND AMPLITUDE ACCUMULATIONS IN DISSIPATIVE SYSTEMS WITH CYCLIC ATTRACTORS [J].
NING, CZ ;
HAKEN, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (14) :2109-2112
[9]  
Phillips N.A., 1954, Tellus, V6, P274, DOI [10.1111/j.2153-3490.1954.tb01123.x, DOI 10.1111/J.2153-3490.1954.TB01123.X]
[10]   SINGLE-MODE-LASER PHASE DYNAMICS [J].
ROLDAN, E ;
DEVALCARCEL, GJ ;
VILASECA, R ;
MANDEL, P .
PHYSICAL REVIEW A, 1993, 48 (01) :591-598