DISPERSION RELATIONS FOR STEADY PERIODIC WATER WAVES OF FIXED MEAN-DEPTH WITH TWO ROTATIONAL LAYERS

被引:4
作者
Martin, Calin Iulian [1 ]
Rodriguez-Sanjurjo, Adrian [2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Coll Cork, Sch Math Sci, Western Rd, Cork T12 XF62, Ireland
基金
爱尔兰科学基金会; 奥地利科学基金会;
关键词
Steady water waves; dispersion relation; discontinuous vorticity; stability of laminar solutions; fixed mean-depth formulation; DISCONTINUOUS VORTICITY; GLOBAL BIFURCATION; SURFACE-TENSION; FLOWS; REGULARITY; SYMMETRY; ANALYTICITY; EXISTENCE;
D O I
10.3934/dcds.2019209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to obtain the dispersion relation for small-amplitude periodic travelling water waves propagating over a flat bed with a specified mean depth under the presence of a discontinuous piecewise constant vorticity. An analysis of the dispersion relation for a model with two rotational layers each having a non-zero constant vorticity is presented. Moreover, we present a stability result for the bifurcation inducing laminar flow solutions.
引用
收藏
页码:5149 / 5169
页数:21
相关论文
共 60 条
[1]   Variational formulations for steady water waves with vorticity [J].
Constantin, A ;
Sattinger, D ;
Strauss, W .
JOURNAL OF FLUID MECHANICS, 2006, 548 (151-163) :151-163
[2]   Symmetry of steady deep-water waves with vorticity [J].
Constantin, A ;
Escher, J .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2004, 15 :755-768
[3]   Hamiltonian Formulation for Wave-Current Interactions in Stratified Rotational Flows [J].
Constantin, A. ;
Ivanov, R. I. ;
Martin, C. -I. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (03) :1417-1447
[4]   A Hamiltonian approach to wave-current interactions in two-layer fluids [J].
Constantin, A. ;
Ivanov, R. I. .
PHYSICS OF FLUIDS, 2015, 27 (08) :086603
[5]   Symmetry of steady periodic surface water waves with vorticity [J].
Constantin, A ;
Escher, J .
JOURNAL OF FLUID MECHANICS, 2004, 498 :171-181
[6]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[7]   Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train [J].
Constantin, A. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2011, 30 (01) :12-16
[8]   Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves [J].
Constantin, A. ;
Kartashova, E. .
EPL, 2009, 86 (02)
[9]  
Constantin A., 2011, CBMS NFS REGIONAL C, V81
[10]   Particle trajectories in linear water waves [J].
Constantin, Adrian ;
Villari, Gabriele .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2008, 10 (01) :1-18