3D graphene framework supported Li2S coated with ultra-thin Al2O3 films: binder-free cathodes for high-performance lithium sulfur batteries

被引:85
作者
Chen, Yan [1 ]
Lu, Songtao [1 ]
Zhou, Jia [1 ]
Wu, Xiaohong [1 ]
Qin, Wei [2 ]
Ogoke, Ogechi [3 ]
Wu, Gang [3 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Tech, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[3] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
X-RAY-DIFFRACTION; ATOMIC LAYER DEPOSITION; NITROGEN-DOPED CARBON; IN-SITU; S BATTERIES; COMPOSITE; PAPER; ELECTRODE; SHELL; NANOCOMPOSITE;
D O I
10.1039/c6ta08039a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium sulfide (Li2S) has drawn special attention as a promising cathode material for emerging energy storage systems due to its high theoretical specific capacity and great compatibility with lithium metal-free anodes. However, Li2S cathodes urgently require a solution to increase their poor electrical conductivity and to suppress the dissolution of long-chain polysulfide (Li2Sn, 4 <= n <= 8) species into electrolyte. To this end, we report a free-standing Al2O3-Li2S-graphene oxide sponge (GS) composite cathode, in which ultrathin Al2O3 films are preferentially coated on Li2S by an atomic layer deposition (ALD) technique. As a result, a combination of high electron conductivity (from GS) and strong binding with Li2Sn (from ultrathin Al2O3 films) was designed for cathodes. The newly developed Al2O3-Li2S-GS cathodes are able to deliver a highly reversible capacity of 736 mA h g(Li2S)(-1) (427 mA h g(cathode)(-1)) at 0.2C, which is much higher than that of corresponding cathodes without Al2O3 (59%). Also, the long-term cycling stability of Al2O3-Li2S-GS cathodes was demonstrated up to 300 cycles at 0.5C with an excellent capacity retention of 88%. In addition, combined with density functional theory calculations, the promotional mechanism of ultrathin Al2O3 films was elucidated using extensive characterization. The ultra-thin Al2O3 film with optimal thickness not only acts as a physical barrier to Li2S nanoparticles, but provides a strong binding interaction to suppress Li2Sn species dissolution.
引用
收藏
页码:102 / 112
页数:11
相关论文
共 70 条
[1]   A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode [J].
Agostini, Marco ;
Hassoun, Jusef ;
Liu, Jun ;
Jeong, Moongook ;
Nara, Hiroki ;
Momma, Toshiyuki ;
Osaka, Tetsuya ;
Sun, Yang-Kook ;
Scrosati, Bruno .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :10924-10928
[2]   Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification [J].
Barchasz, Celine ;
Molton, Florian ;
Duboc, Carole ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :3973-3980
[3]   Carbon- Based Anodes for Lithium Sulfur Full Cells with High Cycle Stability [J].
Brueckner, Jan ;
Thieme, Soeren ;
Boettger-Hiller, Falko ;
Bauer, Ingolf ;
Grossmann, Hannah Tamara ;
Strubel, Patrick ;
Althues, Holger ;
Spange, Stefan ;
Kaskel, Stefan .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (09) :1284-1289
[4]   Nanostructured Li2S-C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries [J].
Cai, Kunpeng ;
Song, Min-Kyu ;
Cairns, Elton J. ;
Zhang, Yuegang .
NANO LETTERS, 2012, 12 (12) :6474-6479
[5]   Experimental and Theoretical Analysis of Products and Reaction Intermediates of Lithium-Sulfur Batteries [J].
Canas, Natalia A. ;
Fronczek, David N. ;
Wagner, Norbert ;
Latz, Arnulf ;
Friedrich, K. Andreas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (23) :12106-12114
[6]   In-situ X-ray diffraction studies of lithium-sulfur batteries [J].
Canas, Natalia A. ;
Wolf, Steffen ;
Wagner, Norbert ;
Friedrich, K. Andreas .
JOURNAL OF POWER SOURCES, 2013, 226 :313-319
[7]   Anodes for Rechargeable Lithium-Sulfur Batteries [J].
Cao, Ruiguo ;
Xu, Wu ;
Lv, Dongping ;
Xiao, Jie ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[8]   Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries [J].
Chen, Lin ;
Liu, Yuzi ;
Ashuri, Maziar ;
Liu, Caihong ;
Shaw, Leon L. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (42) :18026-18032
[9]   Analytical Detection of Polysulfides in the Presence of Adsorption Additives by Operando X-ray Absorption Spectroscopy [J].
Dominko, Robert ;
Patel, Manu U. M. ;
Lapornik, Vida ;
Vizintin, Alen ;
Kozelj, Matjaz ;
Tusar, Natasa N. ;
Arcon, Iztok ;
Stievano, Lorenzo ;
Aquilanti, Giuliana .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (33) :19001-19010
[10]   In Situ-Formed Li2S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries [J].
Fu, Yongzhu ;
Zu, Chenxi ;
Manthiram, Arumugam .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (48) :18044-18047