An Arbitrary-Order Discontinuous Galerkin Method with One Unknown Per Element

被引:30
作者
Li, Ruo [1 ,2 ]
Ming, Pingbing [3 ,4 ]
Sun, Ziyuan [2 ]
Yang, Zhijian [5 ]
机构
[1] Peking Univ, LMAM, CAPT, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, 19A Yu Quan Rd, Beijing 100049, Peoples R China
[5] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Least-squares reconstruction; Discontinuous Galerkin method; Elliptic problem;
D O I
10.1007/s10915-019-00937-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an arbitrary-order discontinuous Galerkin method for second-order elliptic problem on general polygonal mesh with only one degree of freedom per element. This is achieved by locally solving a discrete least-squares over a neighboring element patch. Under a geometrical condition on the element patch, we prove an optimal a priori error estimates in the energy norm and in the L2 norm. The accuracy and the efficiency of the method up to order six on several polygonal meshes are illustrated by a set of benchmark problems.
引用
收藏
页码:268 / 288
页数:21
相关论文
共 51 条
[21]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[22]   UNIFIED HYBRIDIZATION OF DISCONTINUOUS GALERKIN, MIXED, AND CONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS [J].
Cockburn, Bernardo ;
Gopalakrishnan, Jayadeep ;
Lazarov, Raytcho .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1319-1365
[23]  
da Veiga LB, 2014, MS A MOD SIMUL, V11, pV, DOI 10.1007/978-3-319-02663-3
[24]   The Bramble-Hilbert lemma for convex domains [J].
Dekel, S ;
Leviatan, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (05) :1203-1212
[25]   An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators [J].
Di Pietro, Daniele A. ;
Ern, Alexandre ;
Lemaire, Simon .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (04) :461-472
[26]  
DUPONT T, 1980, MATH COMPUT, V34, P441, DOI 10.1090/S0025-5718-1980-0559195-7
[27]   Recovered finite element methods [J].
Georgoulis, Emmanuil H. ;
Pryer, Tristan .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 332 :303-324
[28]   Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities [J].
Geuzaine, Christophe ;
Remacle, Jean-Francois .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (11) :1309-1331
[29]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO
[30]  
Guo HL, 2018, J SCI COMPUT, V74, P1397, DOI 10.1007/s10915-017-0501-0