Gaussian Kernel-Based Fuzzy Clustering with Automatic Bandwidth Computation

被引:3
作者
de Carvalho, Francisco de A. T. [1 ]
Santana, Lucas V. C. [1 ]
Ferreira, Marcelo R. P. [2 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Av Jornalista Anibal Fernandes S-N,Cidade Univ, BR-50740560 Recife, PE, Brazil
[2] Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Estatist, BR-58051900 Joao Pessoa, PB, Brazil
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT I | 2018年 / 11139卷
关键词
D O I
10.1007/978-3-030-01418-6_67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The conventional Gaussian kernel-based fuzzy c-means clustering algorithm has widely demonstrated its superiority to the conventional fuzzy c-means when the data sets are arbitrarily shaped, and not linearly separable. However, its performance is very dependent on the estimation of the bandwidth parameter of the Gaussian kernel function. Usually this parameter is estimated once and for all. This paper presents a Gaussian fuzzy c-means with kernelization of the metric which depends on a vector of bandwidth parameters, one for each variable, that are computed automatically. Experiments with data sets of the UCI machine learning repository corroborate the usefulness of the proposed algorithm.
引用
收藏
页码:685 / 694
页数:10
相关论文
共 50 条
[31]   Robust deep kernel-based fuzzy clustering with spatial information for image segmentation [J].
Lei, Lujia ;
Wu, Chengmao ;
Tian, Xiaoping .
APPLIED INTELLIGENCE, 2023, 53 (01) :23-48
[32]   Robust deep kernel-based fuzzy clustering with spatial information for image segmentation [J].
Lujia Lei ;
Chengmao Wu ;
Xiaoping Tian .
Applied Intelligence, 2023, 53 :23-48
[33]   Enhanced kernel-based fuzzy local information clustering integrating neighborhood membership [J].
Song Yue ;
Wu Chengmao ;
Tian Xiaoping ;
Song Qiuyu .
TheJournalofChinaUniversitiesofPostsandTelecommunications, 2021, 28 (06) :65-81
[34]   Semi-supervised kernel-based fuzzy clustering for gear outlier detection [J].
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China .
Jixie Gongcheng Xuebao, 2009, 10 (48-52) :48-52
[35]   A novel fuzzy rule extraction approach using Gaussian kernel-based granular computing [J].
Dai, Guangyao ;
Hu, Yi ;
Yang, Yu ;
Zhang, Nanxun ;
Abraham, Ajith ;
Liu, Hongbo .
KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 61 (02) :821-846
[36]   A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction [J].
Yang, Miin-Shen ;
Tsai, Hsu-Shen .
PATTERN RECOGNITION LETTERS, 2008, 29 (12) :1713-1725
[37]   A novel fuzzy rule extraction approach using Gaussian kernel-based granular computing [J].
Guangyao Dai ;
Yi Hu ;
Yu Yang ;
Nanxun Zhang ;
Ajith Abraham ;
Hongbo Liu .
Knowledge and Information Systems, 2019, 61 :821-846
[38]   OPTIMAL KERNEL BANDWIDTH ESTIMATION FOR HYPERSPECTRAL KERNEL-BASED ANOMALY DETECTION [J].
Kwon, Heesung ;
Gurram, Prudhvi .
2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, :2812-2815
[39]   2D hierarchical fuzzy clustering using kernel-based membership functions [J].
Proietti, A. ;
Liparulo, L. ;
Panella, M. .
ELECTRONICS LETTERS, 2016, 52 (03) :193-194
[40]   Kernel-based Fuzzy C-means Clustering Based on Fruit Fly Optimization Algorithm [J].
Wang, Qiuping ;
Zhang, Yiran ;
Xiao, Yanting ;
Li, Jidong .
PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON GREY SYSTEMS AND INTELLIGENT SERVICES (GSIS), 2017, :251-256