Monochromatic triangles in three-coloured graphs

被引:22
作者
Cummings, James [1 ]
Kral, Daniel [2 ,3 ,8 ]
Pfender, Florian [4 ]
Sperfeld, Konrad [5 ]
Treglown, Andrew [6 ,8 ]
Young, Michael [7 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ Warwick, Math Inst, DIMAP, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[4] Univ Colorado, Denver, CO 80202 USA
[5] Univ Rostock, Inst Math, D-18057 Rostock, Germany
[6] Univ London, Sch Math Sci, London E1 4NS, England
[7] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[8] Charles Univ Prague, Fac Math & Phys, Inst Comp Sci, Prague 11800, Czech Republic
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Triangle density; Flag algebra; Extremal graph; RAMSEY MULTIPLICITY;
D O I
10.1016/j.jctb.2013.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1959, Goodman [9] determined the minimum number of monochromatic triangles in a complete graph whose edge set is 2-coloured. Goodman (1985) [10] also raised the question of proving analogous results for complete graphs whose edge sets are coloured with more than two colours. In this paper, for n sufficiently large, we determine the minimum number of monochromatic triangles in a 3-coloured copy of K-n. Moreover, we characterise those 3-coloured copies of K-n that contain the minimum number of monochromatic triangles. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:489 / 503
页数:15
相关论文
共 23 条