Quantum extension of conditional probability

被引:74
作者
Cerf, NJ [1 ]
Adami, C
机构
[1] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA
[2] CALTECH, Jet Prop Lab, Informat Syst Technol Sect, Pasadena, CA 91109 USA
关键词
D O I
10.1103/PhysRevA.60.893
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze properties of the quantum conditional amplitude operator [Phys. Rev. Lett. 74, 5194 (1997)], which plays a role similar to that of the conditional probability in classical information theory. The spectrum of the conditional operator that characterizes a quantum bipartite system is shown to be invariant under local unitary transformations and reflects its inseparability. More specifically, it is proven that the conditional amplitude operator of a separable state cannot have an eigenvalue exceeding 1, which results in a necessary condition for separability. A related separability criterion based on the non-negativity of the von Neumann conditional entropy is also exhibited. [S1050-2947(99)00608-3].
引用
收藏
页码:893 / 897
页数:5
相关论文
共 18 条
  • [1] CONDITIONAL QUANTUM DYNAMICS AND LOGIC GATES
    BARENCO, A
    DEUTSCH, D
    EKERT, A
    JOZSA, R
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 4083 - 4086
  • [2] ON PROBLEM OF HIDDEN VARIABLES IN QUANTUM MECHANICS
    BELL, JS
    [J]. REVIEWS OF MODERN PHYSICS, 1966, 38 (03) : 447 - &
  • [3] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [4] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [5] Unextendible product bases and bound entanglement
    Bennett, CH
    DiVincenzo, DP
    Mor, T
    Shor, PW
    Smolin, JA
    Terhal, BM
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (26) : 5385 - 5388
  • [6] Reduction criterion for separability
    Cerf, NJ
    Adami, C
    Gingrich, RM
    [J]. PHYSICAL REVIEW A, 1999, 60 (02): : 898 - 909
  • [7] Negative entropy and information in quantum mechanics
    Cerf, NJ
    Adami, C
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (26) : 5194 - 5197
  • [8] Entropic Bell inequalities
    Cerf, NJ
    Adami, C
    [J]. PHYSICAL REVIEW A, 1997, 55 (05) : 3371 - 3374
  • [9] Cerf NJ, 1997, FUND THEOR, V81, P77
  • [10] QUANTUM COMPUTATION
    DIVINCENZO, DP
    [J]. SCIENCE, 1995, 270 (5234) : 255 - 261