Superconvergence of finite element method for the Signorini problem

被引:13
作者
Li, Ming-xia [1 ]
Lin, Qun [1 ]
Zhang, Shu-hua [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Tianjin Univ Finance & Econ, Dept Math, Tianjin 300222, Peoples R China
关键词
Finite element; The Signorini problem; Superconvergenence;
D O I
10.1016/j.cam.2007.10.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the superconvergence of the frictionless Signorini problem. When approximated by bilinear finite elements, by virtue of the information on the contact zone, we can derive a superconvergence rate of O(h(3/2)) under a proper regularity assumption. Finally, a numerical test is given to verify our result. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 24 条
[1]  
Belhachmi Z, 2003, MATH COMPUT, V72, P83, DOI 10.1090/S0025-5718-01-01413-2
[2]   Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods [J].
Ben Belgacem, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1198-1216
[3]   Hybrid finite element methods for the Signorini problem [J].
Ben Belgacem, F ;
Renard, Y .
MATHEMATICS OF COMPUTATION, 2003, 72 (243) :1117-1145
[4]  
Brenner S. C., 2007, Texts Appl. Math., V15
[5]  
BREZZI F, 1977, NUMER MATH, V28, P431, DOI 10.1007/BF01404345
[6]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[7]  
Duvaut G., 1972, INEQUATIONS MECANIQU
[8]  
GLOWINSKI R, 1976, TREMOLIERES ANAL NUM, V1
[9]  
Grisvard P., 1992, Singularities in Boundary Value Problems, V22
[10]  
Grisvard P., 1985, MONOGRAPHS STUDIES M, V24