Nafion Inhibits Polysulfide Crossover in Hybrid Nonaqueous Redox Flow Batteries

被引:3
作者
Tyler, J. Landon [1 ]
Sacci, Robert L. [2 ]
Lehmann, Michelle L. [2 ]
Yang, Guang [2 ]
Zawodzinski, Thomas A. [3 ]
Nanda, Jagjit [2 ]
机构
[1] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Educ, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Chem & Biomol Engn Dept, Knoxville, TN 37996 USA
关键词
SODIUM-SULFUR BATTERIES; ENERGY DENSITY; MEMBRANE; PERFORMANCE; ELECTROLYTES; REDUCTION; SEPARATOR; COMPOSITE; CARBON;
D O I
10.1021/acs.jpcc.2c06735
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on the effectiveness of sodium-exchanged Nafion membranes for inhibiting polysulfide crossover during redox flow battery operation. The solubility of polysulfides allows them to be used as a high-capacity catholyte for nonaqueous redox flow batteries (NARFB). The NARFB cathode capacity is controlled by the total tank catholyte volume and polysulfide concentration and, as such, is independent of polysulfide adsorption sites on carbon fibers or nanotubes as found within traditional Na or Li-S batteries. However, one of the major barriers to the realization of polysulfide NARFBs is associated with developing a robust membrane that has minimal polysulfide crossover under the operating conditions. We found that sodium exchanged Nafion membrane separators effectively inhibit polysulfide crossover within a Na-sulfur NARFB. These membranes significantly improve both capacity retention (70%) and Coulombic efficiencies (99%) after 50 cycles. Commercial porous membranes showed a large crossover as detected by UV-vis spectroscopy and resulted in low capacity retention (20%) and Coulombic efficiency (74%) after 45 cycles. Electrochemical impedance spectroscopy (EIS) measurements highlighted the trade-off between innate reactivity and ionic conduction of the membranes. The results show that dense, single ion conducting Nafion enables a long cycle life; however, it reacts with Na metal to form a resistive passivation layer and increases the cell resistance. On the contrary, the open pore structure of Celgard allows for higher current charge/discharge, and its chemical nature is compatible with Na; however, it has a high degree of polysulfide crossover.
引用
收藏
页码:21188 / 21195
页数:8
相关论文
共 50 条
[1]   High-capacity polysulfide-polyiodide nonaqueous redox flow batteries with a ceramic membrane [J].
Chen, Mao ;
Chen, Hongning .
NANOSCALE ADVANCES, 2023, 5 (02) :435-442
[2]   Recent Progress in Polysulfide Redox-Flow Batteries [J].
Zhang, Sanpei ;
Guo, Wenjuan ;
Yang, Fengchang ;
Zheng, Panni ;
Qiao, Rui ;
Li, Zheng .
BATTERIES & SUPERCAPS, 2019, 2 (07) :627-637
[3]   Identifying structure-function relationships to modulate crossover in nonaqueous redox flow batteries [J].
Jett, Brianna ;
Flynn, Autumn ;
Sigman, Matthew S. ;
Sanford, Melanie S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (41) :22288-22294
[4]   Liquid Redoxmers for Nonaqueous Redox Flow Batteries [J].
Robertson, Lily A. ;
Uddin, Mohammad Afsar ;
Shkrob, Ilya A. ;
Moore, Jeffrey S. ;
Zhang, Lu .
CHEMSUSCHEM, 2023, 16 (14)
[5]   Electrocatalysts and Membranes for Aqueous Polysulfide Redox Flow Batteries [J].
Khabbaz, Mahla Sarfaraz ;
Biabanialitappeh, Sepideh ;
Wei, Xiaoliang .
ACS NANO, 2025, 19 (22) :20321-20356
[6]   Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries [J].
Huang, Jinhua ;
Cheng, Lei ;
Assary, Rajeev S. ;
Wang, Peiqi ;
Xue, Zheng ;
Burrell, Anthony K. ;
Curtiss, Larry A. ;
Zhang, Lu .
ADVANCED ENERGY MATERIALS, 2015, 5 (06)
[7]   Dual function organic active materials for nonaqueous redox flow batteries [J].
Attanayake, N. Harsha ;
Liang, Zhiming ;
Wang, Yilin ;
Kaur, Aman Preet ;
Parkin, Sean R. ;
Mobley, Justin K. ;
Ewoldt, Randy H. ;
Landon, James ;
Odom, Susan A. .
MATERIALS ADVANCES, 2021, 2 (04) :1390-1401
[8]   Towards Low Resistance Nonaqueous Redox Flow Batteries [J].
Milshtein, Jarrod D. ;
Barton, John L. ;
Carney, Thomas J. ;
Kowalski, Jeffrey A. ;
Darling, Robert M. ;
Brushett, Fikile R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) :A2487-A2499
[9]   The Influence of Electric Field on Crossover in Redox-Flow Batteries [J].
Darling, Robert M. ;
Weber, Adam Z. ;
Tucker, Michael C. ;
Perry, Mike L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (01) :A5014-A5022
[10]   Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density [J].
Baran, Miranda J. ;
Braten, Miles N. ;
Montoto, Elena C. ;
Gossage, Zachary T. ;
Ma, Lin ;
Chenard, Etienne ;
Moore, Jeffrey S. ;
Rodriguez-Lopez, Joaquin ;
Helms, Brett A. .
CHEMISTRY OF MATERIALS, 2018, 30 (11) :3861-3866