Oceanic eddy detection and lifetime forecast using machine learning methods

被引:51
|
作者
Ashkezari, Mohammad D. [1 ]
Hill, Christopher N. [1 ]
Follett, Christopher N. [1 ]
Forget, Gael [1 ]
Follows, Michael J. [1 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
关键词
ocean; eddy; machine learning; eddy lifetime; remote sensing; ALTIMETRY; SEA; TRANSPORT;
D O I
10.1002/2016GL071269
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.
引用
收藏
页码:12234 / 12241
页数:8
相关论文
共 50 条
  • [41] Geological Fractures Detection by Methods of Machine Learning
    M. V. Muratov
    V. A. Biryukov
    I. B. Petrov
    Lobachevskii Journal of Mathematics, 2020, 41 : 533 - 537
  • [42] Machine Learning Methods for Automatic Gender Detection
    Morales Sanchez, Damian
    Moreno, Antonio
    Jimenez Lopez, M. Dolores
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2022, 31 (03)
  • [43] Severe Convective Weather Forecast Using Machine Learning Models
    Jimmy Nogueira de Castro
    Gutemberg Borges França
    Vinícius Albuquerque de Almeida
    Valdonel Manoel de Almeida
    Pure and Applied Geophysics, 2022, 179 : 2945 - 2955
  • [44] Frost Forecast using Machine Learning - from association to causality
    Ding, Liya
    Noborio, Kosuke
    Shibuya, Kazuki
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 1001 - 1010
  • [45] Severe Convective Weather Forecast Using Machine Learning Models
    de Castro, Jimmy Nogueira
    Franca, Gutemberg Borges
    de Almeida, Vinicius Albuquerque
    de Almeida, Valdonel Manoel
    PURE AND APPLIED GEOPHYSICS, 2022, 179 (08) : 2945 - 2955
  • [46] Power Load Forecast for North Macedonia Using Machine Learning
    Popovski, Pande
    Kostov, Mitko
    Atanasovski, Metodija
    Veljanovski, Goran
    2020 55TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES (IEEE ICEST 2020), 2020, : 106 - 109
  • [47] Proximal Methods for Plant Stress Detection Using Optical Sensors and Machine Learning
    Zubler A.V.
    Yoon J.-Y.
    Biosensors, 2020, 10 (12):
  • [48] ANALYSIS OF MACHINE LEARNING METHODS ON MALWARE DETECTION
    Aydogan, Emre
    Sen, Sevil
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 2066 - 2069
  • [49] Machine Learning Methods for Software Vulnerability Detection
    Chernis, Boris
    Verma, Rakesh
    IWSPA '18: PROCEEDINGS OF THE FOURTH ACM INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS, 2018, : 31 - 39
  • [50] Detection of Broken Rotor Bars in Induction Machines using Machine Learning Methods
    Quabeck, Stefan
    Shangguan, Wenbo
    Scharfenstein, Daniel
    De Doncker, Rik W.
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2021, 10 (06) : 688 - 693