Oceanic eddy detection and lifetime forecast using machine learning methods

被引:51
|
作者
Ashkezari, Mohammad D. [1 ]
Hill, Christopher N. [1 ]
Follett, Christopher N. [1 ]
Forget, Gael [1 ]
Follows, Michael J. [1 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
关键词
ocean; eddy; machine learning; eddy lifetime; remote sensing; ALTIMETRY; SEA; TRANSPORT;
D O I
10.1002/2016GL071269
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.
引用
收藏
页码:12234 / 12241
页数:8
相关论文
共 50 条
  • [1] Machine Learning Methods for Seismic Hazards Forecast
    Gitis, Valeri G.
    Derendyaev, Alexander B.
    GEOSCIENCES, 2019, 9 (07)
  • [2] Machine learning methods to forecast temperature in buildings
    Mateo, Fernando
    Jose Carrasco, Juan
    Sellami, Abderrahim
    Millan-Giraldo, Monica
    Dominguez, Manuel
    Soria-Olivas, Emilio
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (04) : 1061 - 1068
  • [3] Application of Three Deep Learning Schemes Into Oceanic Eddy Detection
    Xu, Guangjun
    Xie, Wenhong
    Dong, Changming
    Gao, Xiaoqian
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [4] Jobs Runtime Forecast for JSCC RAS Supercomputers Using Machine Learning Methods
    G. I. Savin
    B. M. Shabanov
    D. S. Nikolaev
    A. V. Baranov
    P. N. Telegin
    Lobachevskii Journal of Mathematics, 2020, 41 : 2593 - 2602
  • [5] Characterization of subsurface cracks in eddy current testing using machine learning methods
    Barrarat, Fatima
    Rayane, Karim
    Helifa, Bachir
    Lefkaier, Ibn Khaldoun
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2022, 35 (06)
  • [6] Phishing URL detection using machine learning methods
    Ahammad, S. K. Hasane
    Kale, Sunil D.
    Upadhye, Gopal D.
    Pande, Sandeep Dwarkanath
    Babu, E. Venkatesh
    Dhumane, Amol, V
    Bahadur, Dilip Kumar Jang
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 173
  • [7] Detection of physical activity using machine learning methods
    Denes-Fazakas, Lehel
    Szilagyi, Laszlo
    Tasic, Jelena
    Kovacs, Levente
    Eigner, Gyorgy
    2020 IEEE 20TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI), 2020,
  • [8] Application of Machine Learning Methods in Pork Price Forecast
    Ma, Zaixing
    Chen, Zhongmin
    Chen, Taotao
    Du, Mingwei
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 133 - 136
  • [9] The Prediction of Oceanic Mesoscale Eddy Properties and Propagation Trajectories Based on Machine Learning
    Wang, Xin
    Wang, Huizan
    Liu, Donghan
    Wang, Wenke
    WATER, 2020, 12 (09)
  • [10] Fake News Detection Using Machine Learning and Deep Learning Methods
    Saeed, Ammar
    Al Solami, Eesa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2079 - 2096