GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks

被引:10
|
作者
Shrivastava, Harsh [1 ]
Zhang, Xiuwei [1 ]
Song, Le [1 ]
Aluru, Srinivas [1 ]
机构
[1] Georgia Inst Technol, Dept Computat Sci & Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
deep learning; gene regulatory networks; unrolled algorithms; single-cell RNA-Seq; COVARIANCE ESTIMATION; INFERENCE; STEM; EXPRESSION; TIME;
D O I
10.1089/cmb.2021.0437
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We propose GRNUlar, a novel deep learning framework for supervised learning of gene regulatory networks (GRNs) from single-cell RNA-Sequencing (scRNA-Seq) data. Our framework incorporates two intertwined models. First, we leverage the expressive ability of neural networks to capture complex dependencies between transcription factors and the corresponding genes they regulate, by developing a multitask learning framework. Second, to capture sparsity of GRNs observed in the real world, we design an unrolled algorithm technique for our framework. Our deep architecture requires supervision for training, for which we repurpose existing synthetic data simulators that generate scRNA-Seq data guided by an underlying GRN. Experimental results demonstrate that GRNUlar outperforms state-of-the-art methods on both synthetic and real data sets. Our study also demonstrates the novel and successful use of expression data simulators for supervised learning of GRN inference.
引用
收藏
页码:27 / 44
页数:18
相关论文
共 50 条
  • [1] A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data
    Zhao, Mengyuan
    He, Wenying
    Tang, Jijun
    Zou, Quan
    Guo, Fei
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [2] Discriminating the single-cell gene regulatory networks of human pancreatic islets: A novel deep learning application
    Turki, Turki
    Taguchi, Y-h.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132
  • [3] Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks
    Yang, Yongjian
    Li, Guanxun
    Zhong, Yan
    Xu, Qian
    Chen, Bo-Jia
    Lin, Yu-Te
    Chapkin, Robert S.
    Cai, James J.
    NUCLEIC ACIDS RESEARCH, 2023, 51 (13) : 6578 - 6592
  • [4] Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data
    Xu, Junlin
    Lu, Changcheng
    Jin, Shuting
    Meng, Yajie
    Fu, Xiangzheng
    Zeng, Xiangxiang
    Nussinov, Ruth
    Cheng, Feixiong
    NUCLEIC ACIDS RESEARCH, 2025, 53 (05)
  • [5] Inferring gene regulatory networks from single-cell gene expression data via deep multi-view contrastive learning
    Lin, Zerun
    Le Ou-Yang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [6] Single-cell pluripotency regulatory networks
    Stumpf, Patrick S.
    Ewing, Rob
    MacArthur, Ben D.
    PROTEOMICS, 2016, 16 (17) : 2303 - 2312
  • [7] Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics
    Groves, Sarah M.
    Quaranta, Vito
    FRONTIERS IN NETWORK PHYSIOLOGY, 2023, 3
  • [8] Single-Cell Gene-Regulatory Networks of Advanced Symptomatic Atherosclerosis
    Mocci, Giuseppe
    Sukhavasi, Katyayani
    Ord, Tiit
    Bankier, Sean
    Singha, Prosanta
    Arasu, Uma Thanigai
    Agbabiaje, Olayinka Oluwasegun
    Makinen, Petri
    Ma, Lijiang
    Hodonsky, Chani J.
    Aherrahrou, Redouane
    Muhl, Lars
    Liu, Jianping
    Gustafsson, Sonja
    Byandelger, Byambajav
    Wang, Ying
    Koplev, Simon
    Lendahl, Urban
    Owens, Gary K.
    Leeper, Nicholas J.
    Pasterkamp, Gerard
    Vanlandewijck, Michael
    Michoel, Tom
    Ruusalepp, Arno
    Hao, Ke
    Yla-Herttuala, Seppo
    Vali, Marika
    Jarve, Heli
    Mokry, Michal
    Civelek, Mete
    Miller, Clint J.
    Kovacic, Jason C.
    Kaikkonen, Minna U.
    Betsholtz, Christer
    Bjorkegren, Johan L. M.
    CIRCULATION RESEARCH, 2024, 134 (11) : 1405 - 1423
  • [9] Reconstructing gene regulatory networks in single-cell transcriptomic data analysis
    Hao Dai
    Qi-Qi Jin
    Lin Li
    Luo-Nan Chen
    Zoological Research, 2020, 41 (06) : 599 - 604
  • [10] Mapping gene regulatory networks from single-cell omics data
    Fiers, Mark W. E. J.
    Minnoye, Liesbeth
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Atak, Zeynep Kalender
    Aerts, Stein
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 246 - 254