Approximate factorization constraint preconditioners for saddle-point matrices

被引:55
|
作者
Dollar, HS [1 ]
Wathen, AJ [1 ]
机构
[1] Univ Oxford, Comp Lab, Numer Anal Grp, Oxford OX1 3QD, England
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2006年 / 27卷 / 05期
关键词
preconditioning; indefinite linear systems; Krylov subspace methods; conjugate gradient method;
D O I
10.1137/04060768X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.
引用
收藏
页码:1555 / 1572
页数:18
相关论文
共 50 条
  • [31] The modified shift-splitting preconditioners for nonsymmetric saddle-point problems
    Zhou, Sheng-Wei
    Yang, Ai-Li
    Dou, Yan
    Wu, Yu-Jiang
    APPLIED MATHEMATICS LETTERS, 2016, 59 : 109 - 114
  • [32] Edgeworth and saddle-point approximations for random rectangular matrices
    Department of Information Science, Faculty of Economics, Kagawa University, 2-1 Saiwai-cho, Takamatsu-shi, Kagawa-ken, 760, Japan
    Linear Algebra Its Appl, (133-153):
  • [34] Edgeworth and saddle-point approximations for random rectangular matrices
    Chikuse, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 237 : 133 - 153
  • [35] Sparse block factorization of saddle point matrices
    Lungten, S.
    Schilders, W. H. A.
    Maubach, J. M. L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 502 : 214 - 242
  • [36] Constraint-style preconditioners for regularized saddle point problems
    Dollar, H. S.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 672 - 684
  • [37] Constraint Schur complement preconditioners for nonsymmetric saddle point problems
    Cao, Zhi-Hao
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (01) : 151 - 169
  • [38] AUGMENTATION-BASED PRECONDITIONERS FOR SADDLE-POINT SYSTEMS WITH SINGULAR LEADING BLOCKS
    Bradley S.
    Greif C.
    Electronic Transactions on Numerical Analysis, 2024, 60 : 221 - 237
  • [39] FOV-equivalent block triangular preconditioners for generalized saddle-point problems
    Aulisa, Eugenio
    Calandrini, Sara
    Capodaglio, Giacomo
    APPLIED MATHEMATICS LETTERS, 2018, 75 : 43 - 49
  • [40] Modified block symmetric SOR preconditioners for large sparse saddle-point problems
    Zhang, Litao
    Cheng, Shaohua
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS, PTS 1-4, 2013, 241-244 : 2583 - 2586