Nodal regulates energy metabolism in glioma cells by inducing expression of hypoxia-inducible factor 1α

被引:35
|
作者
Lai, Jing-Huei [1 ]
Jan, Hsun-Jin [2 ]
Liu, Li-Wen [2 ]
Lee, Chin-Cheng [3 ]
Wang, Shyang-Guang [5 ]
Hueng, Dueng-Yuan [6 ]
Cheng, Yung-Yen [2 ]
Lee, Horng-Mo [2 ,4 ,5 ]
Ma, Hsin-I [1 ,6 ]
机构
[1] Natl Def Med Ctr, Grad Inst Life Sci, Taipei, Taiwan
[2] Taipei Med Univ, Inst Med Sci, Taipei 110, Taiwan
[3] Shin Kong Mem Hosp, Dept Pathol, Taipei, Taiwan
[4] Taipei Med Univ, Coll Med, Grad Inst Med Sci, Taipei 110, Taiwan
[5] Cent Taiwan Univ Sci & Technol, Grad Inst Pharmaceut Sci & Technol, Taichung, Taiwan
[6] Triserv Gen Hosp, Dept Neurosurg, Taipei, Taiwan
关键词
energy metabolism; gliomas; Glut-1; HIF-1; Nodal; BREAST-CANCER; TUMOR-GROWTH; HIF-ALPHA; PROLIFERATION; GENES;
D O I
10.1093/neuonc/not086
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. A shift in glucose metabolism from oxidative phosphorylation to anaerobic glycolysis is the biochemical hallmark of malignant cancer cells. Methods. In the present study, we demonstrated that Nodal stimulated the expression of glycolytic enzymes and decreased reliance on mitochondrial oxidative phosphorylation in human glioma cancer cells. The shift in glucose metabolism was mediated by induction of the hypoxia-inducible factor (HIF). Results. Nodal protein expression was shown to be correlated with expression levels of glucose transporter (Glut)-1, hexokinase (HK)-II, pyruvate dehydrogenase kinase (PDK)-1, the phosphorylation level of pyruvate dehydrogenase (PDH), glucose uptake, and lactate accumulation in human glioma cells. These effects were inversely correlated with mitochondrial oxygen consumption and ATP production. Knockdown of Nodal expression with specific small hairpin RNA reduced Glut-1, HK-II, and PDK-1 expressions and PDH phosphorylation. Nodal knockdown also reduced glucose uptake and lactate generation, which in turn increased mitochondrial membrane potential (Psi), O-2 utilization, and ATP synthesis. The ectopic expression of Nodal in low-expressing Nodal glioma cells resulted in the opposite results compared with those of Nodal knockdown glioma cells. Treatment of cells with recombinant Nodal increased HIF-1 expression, and this effect was regulated at the transcriptional level. Blockage of the Nodal receptor by a pharmacological inhibitor or Nodal knockdown inU87MGcells decreased HIF-1 alpha expression. Furthermore, HIF-1 alpha knockdown in U87MG cells decreased Glut-1, HK-II, and PDK-1 expressions and PDH phosphorylation, which were similar to results in Nodal knockdown cells. Conclusion. Taken together, these results suggest that Nodal affects energy metabolism through HIF-1 alpha.
引用
收藏
页码:1330 / 1341
页数:12
相关论文
共 50 条
  • [41] Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge
    Koyasu, Sho
    Kobayashi, Minoru
    Goto, Yoko
    Hiraoka, Masahiro
    Harada, Hiroshi
    CANCER SCIENCE, 2018, 109 (03): : 560 - 571
  • [42] Honokiol inhibits hypoxia-inducible factor-1 pathway
    Lan, Keng-Li
    Lan, Keng-Hsin
    Sheu, Meei-Ling
    Chen, Ming-Yuan
    Shih, Yi-Sheng
    Hsu, Fu-Chih
    Wang, Hong-Ming
    Liu, Ren-Shyan
    Yen, Sang-Hue
    INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2011, 87 (06) : 579 - 590
  • [43] MCM Proteins Are Negative Regulators of Hypoxia-Inducible Factor 1
    Hubbi, Maimon E.
    Luo, Weibo
    Baek, Jin H.
    Semenza, Gregg L.
    MOLECULAR CELL, 2011, 42 (05) : 700 - 712
  • [44] Cancer Therapy By Targeting Hypoxia-Inducible Factor-1
    Li, Y.
    Ye, D.
    CURRENT CANCER DRUG TARGETS, 2010, 10 (07) : 782 - 796
  • [45] Differential Regulation of Pulmonary Vascular Cell Growth by Hypoxia-Inducible Transcription Factor-1α and Hypoxia-Inducible Transcription Factor-2α
    Ahmad, Aftab
    Ahmad, Shama
    Malcolm, Kenneth C.
    Miller, Stacy M.
    Hendry-Hofer, Tara
    Schaack, Jerome B.
    White, Carl W.
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2013, 49 (01) : 78 - 85
  • [46] Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1
    Ruthenborg, Robin J.
    Ban, Jae-Jun
    Wazir, Anum
    Takeda, Norihiko
    Kim, Jung-whan
    MOLECULES AND CELLS, 2014, 37 (09) : 637 - 643
  • [47] Skeletal muscle hypoxia-inducible factor-1 and exercise
    Lindholm, Malene E.
    Rundqvist, Helene
    EXPERIMENTAL PHYSIOLOGY, 2016, 101 (01) : 28 - 32
  • [48] Hypoxia-inducible factor 1α promotes interleukin 1β and tumour necrosis factor α expression in lipopolysaccharide-stimulated human dental pulp cells
    Fujii, M.
    Kawashima, N.
    Tazawa, K.
    Hashimoto, K.
    Nara, K.
    Noda, S.
    Nagai, S.
    Okiji, T.
    INTERNATIONAL ENDODONTIC JOURNAL, 2020, 53 (05) : 636 - 646
  • [49] Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions
    Liu, Maoxi
    Du, Kunli
    Fu, Zhongxue
    Zhang, Shouru
    Wu, Xingye
    MEDICAL ONCOLOGY, 2015, 32 (01)
  • [50] MicroRNA-138 negatively regulates the hypoxia-inducible factor 1α to suppress melanoma growth and metastasis
    Qiu, Haijiang
    Chen, Fangchao
    Chen, Minjun
    BIOLOGY OPEN, 2019, 8 (08):