Graded identities of group algebras

被引:6
作者
Sehgal, SK [1 ]
Zaicev, MV
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
[2] Moscow MV Lomonosov State Univ, Dept Math & Mech, Dept Algebra, Moscow 119899, Russia
关键词
D O I
10.1081/AGB-120006505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a normal subgroup of G. Then the group algebra A = FG can be naturally graded by G/H where the homogeneous components are cosets. We prove that if A satisfies a G/H-graded identity than it also satisfies an ordinary polynomial identity under the assumption that [G : H] is finite.
引用
收藏
页码:489 / 505
页数:17
相关论文
共 8 条
[1]   G-identities on associative algebras [J].
Bahturin, Y ;
Giambruno, A ;
Zaicev, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :63-69
[2]   Group-graded algebras with polynomial identity [J].
Bahturin, Y ;
Giambruno, A ;
Riley, DM .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 104 (1) :145-155
[3]   GROUPS WITH REPRESENTATIONS OF BOUNDED DEGREE [J].
ISAACS, IM ;
PASSMAN, DS .
CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (02) :299-&
[4]  
JACOBSON N, 1975, LECT NOTES MATH, V441, P1
[5]  
MONTGOMERY S, 1980, LECT NOTES MATH, V818, P1
[6]   GROUP RINGS SATISFYING A POLYNOMIAL IDENTITY [J].
PASSMAN, DS .
JOURNAL OF ALGEBRA, 1972, 20 (01) :103-&
[7]  
Passman DS, 1977, The Algebraic Structure of Group Rings. Pure and Applied Mathematics, P720
[8]  
ROWEN LH, 1980, POLYNOMIAL IDENTITIE, P365