On the Boundary Limits of Monotone Sobolev Functions in Variable Exponent Orlicz Spaces

被引:1
作者
Futamura, Toshihide [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Daido Univ, Dept Math, Nagoya, Aichi 4578530, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Monotone Sobolev functions; nontangential limits; tangential limits; Lindelof theorem; variable exponent; LINDELOF THEOREMS; TRACES;
D O I
10.1007/s10114-013-0575-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this note is to deal with boundary limits of monotone Sobolev functions with del u is an element of L-p(.) log L-q(.)(B) for the unit ball B subset of R-n. Here p(.) and p(.) are variable exponents satisfying the log-Holder and the log log-Holder conditions, respectively.
引用
收藏
页码:461 / 470
页数:10
相关论文
共 17 条
[1]  
Cruz-Uribe D, 2009, T AM MATH SOC, V361, P2631
[2]  
Futamura T, 2003, ANN ACAD SCI FENN-M, V28, P271
[3]  
Futamura T., 2004, HIROSHIMA MATH J, V34, P413
[4]  
FUTAMURA T, 2006, ADV STUD PURE MATH, V44, P127
[5]  
Futamura T., 2005, Complex Var. Theory Appl., V50, P441
[6]   Lindelof theorems for monotone Sobolev functions with variable exponent [J].
Futamura, Toshihide ;
Shimomura, Tetsu .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2008, 84 (02) :25-28
[7]   Regularity theory and traces of A-harmonic functions [J].
Koskela, P ;
Manfredi, JJ ;
Villamor, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (02) :755-766
[8]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[9]  
Lebesgue H., 1907, Rend. Circ. Palermo, V27, P371
[10]   Traces of monotone functions in weighted Sobolev spaces [J].
Manfredi, JJ ;
Villamor, E .
ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (02) :403-422