The validity of the multifractal formalism: Results and examples

被引:62
作者
Ben Nasr, F [1 ]
Bhouri, I
Heurteaux, Y
机构
[1] Fac Sci Monastir, Monastir 5000, Tunisia
[2] Inst Preparatoire Etud Ingn Monastir, Monastir 5000, Tunisia
[3] Univ Clermont Ferrand, Lab Math Pures, F-63177 Aubiere, France
关键词
multifractal formalism; multifractal spectrum; Hausdorff dimension; packing dimension;
D O I
10.1006/aima.2001.2025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By obtaining a new sufficient condition for a valid multifractal formalism, we improve in this paper a result developed by. L. Olsen (1995. Adv. Math. 116, 82 196). In particular. we describe a large class of measures satisfying the multifractal formalism and for which the construction of Gibbs measures is not possible, Some of these measures are not unidimensional but hake a nontrivial multifractal spectrum. giving a negative answer to a question asked by S. J. Taylor (1995. J. Fourier Anal. Appl., special issue). We also describe a necessary condition of validity for the formalism which is very close to the sufficient one. This necessary condition allows us to describe a measure mu for which the multifractal packing dimension function B-n(q) is a nontrivial real analytic function but the multifractal formalism is nowhere satisfied. This example gives also a solution to a problem posed by Taylor (cited above). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:264 / 284
页数:21
相关论文
共 20 条
[1]  
BATAKIS A, 1998, UNPUB RELATIONS ENTR
[2]  
BenNasr F, 1997, CR ACAD SCI I-MATH, V325, P253
[3]  
BENNASR F, 1998, MULTIFRACTALITE MESU
[4]  
BESICOVITCH AS, 1946, P CAMB PHILOS SOC, V42, P1
[5]   ON THE MULTIFRACTAL ANALYSIS OF MEASURES [J].
BROWN, G ;
MICHON, G ;
PEYRIERE, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :775-790
[6]   MULTIFRACTAL DECOMPOSITIONS OF MORAN FRACTALS [J].
CAWLEY, R ;
MAULDIN, RD .
ADVANCES IN MATHEMATICS, 1992, 92 (02) :196-236
[7]  
EDGAR GA, 1992, P LOND MATH SOC, V65, P605
[8]  
Falconer K., 1997, Techniques in fractal geometry
[9]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[10]   Estimates for the lower and the upper dimension of a measure [J].
Heurteaux, Y .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1998, 34 (03) :309-338