Experimental studies on active vibration control of a smart composite beam using a PID controller

被引:48
作者
Jovanovic, Miroslav M. [1 ]
Simonovic, Aleksandar M. [2 ]
Zoric, Nemanja D. [2 ]
Lukic, Nebojsa S. [1 ]
Stupar, Slobodan N. [2 ]
Ilic, Slobodan S. [1 ]
机构
[1] Serbian Armed Forces, Tech Test Ctr, Belgrade 11000, Serbia
[2] Univ Belgrade, Fac Mech Engn, Belgrade 11120, Serbia
关键词
PIEZOELECTRIC ACTUATORS; LOCATION; SENSORS; DESIGN;
D O I
10.1088/0964-1726/22/11/115038
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional-integral (PI) control and proportional-derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s).
引用
收藏
页数:8
相关论文
共 21 条
[1]  
Alkhatib R., 2003, Shock and Vibration Digest, V35, P367, DOI 10.1177/05831024030355002
[2]  
Astrom K.J., 1995, INSTRUMENT SOC AM
[3]   An algorithm for LQ optimal actuator location [J].
Darivandi, Neda ;
Morris, Kirsten ;
Khajepour, Amir .
SMART MATERIALS AND STRUCTURES, 2013, 22 (03)
[4]   Smart structures: Part II - Hybrid control systems and control strategies [J].
Fisco, N. R. ;
Adeli, H. .
SCIENTIA IRANICA, 2011, 18 (03) :285-295
[5]   Active vibration suppression of multilayered plates integrated with piezoelectric fiber reinforced composites using an efficient finite element model [J].
Kapuria, S. ;
Yasin, M. Y. .
JOURNAL OF SOUND AND VIBRATION, 2010, 329 (16) :3247-3265
[6]   Active vibration control of piezoelectric laminated beams with electroded actuators and sensors using an efficient finite element involving an electric node [J].
Kapuria, S. ;
Yasin, M. Yaqoob .
SMART MATERIALS AND STRUCTURES, 2010, 19 (04)
[7]   The optimal location of piezoelectric actuators and sensors for vibration control of plates [J].
Kumar, K. Ramesh ;
Narayanan, S. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (06) :2680-2691
[8]   Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators [J].
Narayanan, S ;
Balamurugan, V .
JOURNAL OF SOUND AND VIBRATION, 2003, 262 (03) :529-562
[9]   Active vibration damping of composite structures using a nonlinear fuzzy controller [J].
Nasser, Houssein ;
Kiefer-Kamal, El-Hassania ;
Hu, Heng ;
Belouettar, Salim ;
Barkanov, Evegny .
COMPOSITE STRUCTURES, 2012, 94 (04) :1385-1390
[10]   The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment [J].
Qing, Xinlin P. ;
Beard, Shawn J. ;
Kumar, Amrita ;
Sullivan, Kevin ;
Aguilar, Robert ;
Merchant, Munir ;
Taniguchi, Mike .
SMART MATERIALS & STRUCTURES, 2008, 17 (05)