Transferable Graphene Oxide by Stamping Nanotechnology: Electron-Transport Layer for Efficient Bulk-Heterojunction Solar Cells

被引:105
作者
Wang, Dong Hwan [1 ]
Kim, Jung Kyu [2 ,3 ]
Seo, Jung Hwa [4 ]
Park, Insun [5 ]
Hong, Byung Hee [6 ]
Park, Jong Hyeok [2 ,3 ]
Heeger, Alan J. [1 ]
机构
[1] Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Santa Barbara, CA 93106 USA
[2] Sungkyunkwan Univ, Sch Chem Engn, Suwon 440746, South Korea
[3] Sungkyunkwan Univ, SAINT, Suwon 440746, South Korea
[4] Dong A Univ, Coll Nat Sci, Dept Mat Phys, Pusan 604714, South Korea
[5] Samsung Elect, Samsung Adv Inst Technol, Yongin 446712, South Korea
[6] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea
基金
美国国家科学基金会;
关键词
electron transport; graphene oxide; nanotechnology; solar cells; stamping transfer; POLYMER PHOTOVOLTAIC CELLS; ENERGY-LEVEL ALIGNMENT; LIGHT-EMITTING-DIODES; TANDEM POLYMER; FILMS; STABILITY; ANODES; METAL;
D O I
10.1002/anie.201209999
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layer by layer: Electron-transport layers (ETLs) of transferable graphene oxide (GO) inserted by using a stamping nanotechnology (see picture) result in bulk-heterojunction (BHJ) solar cells with enhanced power conversion efficiency because of enhanced electron-charge transport and reduced electronic charge barrier with low series resistance. The GO ETL also increases the stability of the device in air. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:2874 / 2880
页数:7
相关论文
共 50 条
  • [41] Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells
    Hau, Steven K.
    O'Malley, Kevin M.
    Cheng, You-Jung
    Yip, Hin-Lap
    Ma, Hong
    Jen, Alex K. -Y.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (06) : 1665 - 1675
  • [42] Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic
    Ryu, Mi Sun
    Jang, Jin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (10) : 2893 - 2896
  • [43] Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT: PSS double decked hole transport layer
    Rafique, Saqib
    Abdullah, Shahino Mah
    Shahid, Muhammad Mehmood
    Ansari, Mohammad Omaish
    Sulaiman, Khaulah
    SCIENTIFIC REPORTS, 2017, 7
  • [44] Driving vertical phase separation in a bulk-heterojunction by inserting a poly(3-hexylthiophene) layer for highly efficient organic solar cells
    Oh, Jin Young
    Jang, Woo Soon
    Lee, Tae Il
    Myoung, Jae-Min
    Baik, Hong Koo
    APPLIED PHYSICS LETTERS, 2011, 98 (02)
  • [45] Monte Carlo Simulation for Investigation of Morphology Dependent Charge Transport in Bulk-Heterojunction Organic Solar Cells
    Taherpour, Mahyar
    Abdi, Yaser
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (03) : 1527 - 1538
  • [46] Efficient solar trapping with vanadium oxide hole transport layer in perovskite solar cells
    Kumar, Kapil
    Giri, Pushpa
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [47] Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers
    Itoh, Eiji
    Goto, Yoshinori
    Fukuda, Katsutoshi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (02)
  • [48] Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells
    Liu, Xiaodong
    Kim, Hyunsoo
    Guo, L. Jay
    ORGANIC ELECTRONICS, 2013, 14 (02) : 591 - 598
  • [49] Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells
    Li, Shao-Sian
    Tu, Kun-Hua
    Lin, Chih-Cheng
    Chen, Chun-Wei
    Chhowalla, Manish
    ACS NANO, 2010, 4 (06) : 3169 - 3174
  • [50] Flexible PTB7:PC70BM Bulk-Heterojunction Solar Cells with LiF Cathode Buffer Layer
    Yanagidate, Tatsuki
    Fujii, Shunjiro
    Ohzeki, Masaya
    Yanagi, Yuichiro
    Arai, Yuki
    Okukawa, Takanori
    Yoshida, Akira
    Kataura, Hiromichi
    Nishioka, Yasushiro
    PHOTOVOLTAICS FOR THE 21ST CENTURY 9, 2013, 58 (11): : 39 - 48