Sufficient conditions for uniform convergence on layer-adapted grids

被引:129
作者
Roos, HG [1 ]
Linss, T [1 ]
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
关键词
convection-diffusion problems; finite element method; upwind scheme; singular perturbation; Shishkin mesh;
D O I
10.1007/s006070050049
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study convergence properties of the simple upwind difference scheme and a Galerkin finite element method on generalized Shishkin grids. We derive conditions on the mesh-characterizing function that are sufficient for the convergence of the method, uniformly with respect to the perturbation parameter. These conditions are easy to check and enable one to immediately deduce the rate of convergence. Numerical experiments support these theoretical results and indicate that the estimates are sharp. The analysis is set in one dimension, but can be easily generalized to tensor product meshes in 2D. AMS Subject Classifications: 65L10, 65L12, 65L60.
引用
收藏
页码:27 / 45
页数:19
相关论文
共 25 条
  • [1] ANDREYEV VB, 1995, COMP MATH MATH PHYS+, V35, P581
  • [2] Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem
    Apel, T
    Lube, G
    [J]. APPLIED NUMERICAL MATHEMATICS, 1998, 26 (04) : 415 - 433
  • [3] BAKHVALOV NS, 1969, USSR COMP MATH MATH+, V9, P841
  • [4] BOGLAYEV IP, 1984, ZH VYCH MAT MAT FIZ, V24, P1649
  • [5] Hughes TJR., 1979, Finite element methods for convection dominated flows, P19
  • [6] LINSS T, 1998, MATHNM041998 TU DRES
  • [7] LINSS T, 1998, MATHNM051998 TU DRES
  • [8] LINSS T, 1998, 19982 NAT U IR DEP M
  • [9] LINSS T, IN PRESS APPL NUM MA
  • [10] LINSS T, 1998, 19984 NAT U IR DEP M