The Importance of Fullerene Percolation in the Mixed Regions of Polymer-Fullerene Bulk Heterojunction Solar Cells

被引:412
|
作者
Bartelt, Jonathan A. [1 ]
Beiley, Zach M. [1 ]
Hoke, Eric T. [2 ]
Mateker, William R. [1 ]
Douglas, Jessica D. [3 ]
Collins, Brian A. [4 ]
Tumbleston, John R. [4 ]
Graham, Kenneth R. [1 ,5 ]
Amassian, Aram [5 ]
Ade, Harald [4 ]
Frechet, Jean M. J. [3 ,5 ]
Toney, Michael F. [6 ]
McGehee, Michael D. [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[5] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[6] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
关键词
organic electronics; photovoltaic devices; solar cells; bulk heterojunctions; charge transport; POWER CONVERSION EFFICIENCY; CHARGE-TRANSPORT; PHOTOVOLTAIC CELLS; MORPHOLOGY; CRYSTALLIZATION; MISCIBILITY; PERFORMANCE; SCATTERING; DONOR; SPECTROSCOPY;
D O I
10.1002/aenm.201200637
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than approximate to 80% of incident photons with energies above the polymer's band gap. If the thickness of these devices could be increased without sacrificing internal quantum efficiency, the device power conversion efficiency (PCE) could be significantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b]dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) with 7.3% PCE and find that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum efficiency. These findings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum efficiency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells.
引用
收藏
页码:364 / 374
页数:11
相关论文
共 50 条
  • [41] Solvent additives for tuning the photovoltaic properties of polymer-fullerene solar cells
    De Sio, Antonietta
    Modena, Thomas
    Huber, Ralph
    Parisi, Juergen
    Neyshtadt, Shany
    Deschler, Felix
    Da Como, Enrico
    Esposito, Salvatore
    von Hauff, Elizabeth
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (12) : 3536 - 3542
  • [42] Semiconducting Carbon Nanotubes for Improved Efficiency and Thermal Stability of Polymer-Fullerene Solar Cells
    Salim, Teddy
    Lee, Hang-Woo
    Wong, Lydia Helena
    Oh, Joon Hak
    Bao, Zhenan
    Lam, Yeng Ming
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (01) : 51 - 65
  • [43] Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells
    Wen, Jianguo
    Miller, Dean J.
    Chen, Wei
    Xu, Tao
    Yu, Luping
    Darling, Seth B.
    Zaluzec, Nestor J.
    MICROSCOPY AND MICROANALYSIS, 2014, 20 (05) : 1507 - 1513
  • [44] Distribution of Crystalline Polymer and Fullerene Clusters in Both Horizontal and Vertical Directions of High-Efficiency Bulk Heterojunction Solar Cells
    Liu, Chih-Ming
    Su, Ming-Shin
    Jiang, Jian-Ming
    Su, Yu-Wei
    Su, Chun-Jen
    Chen, Charn-Ying
    Tsao, Cheng-Si
    Wei, Kung-Hwa
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (12) : 5413 - 5422
  • [45] Molecular Miscibility of Polymer-Fullerene Blends
    Collins, Brian A.
    Gann, Eliot
    Guignard, Lewis
    He, Xiaoxi
    McNeill, Christopher R.
    Ade, Harald
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (21): : 3160 - 3166
  • [46] Photocarrier relaxation through the manifold of localized states in a polymer-fullerene bulk heterojunction material
    Coates, Nelson E.
    Moses, Daniel
    Heeger, Alan J.
    APPLIED PHYSICS LETTERS, 2011, 98 (10)
  • [47] Organic photovoltaics -: Polymer-fullerene composite solar cells
    Thompson, Barry C.
    Frechet, Jean M. J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (01) : 58 - 77
  • [48] Influence of Phonon Scattering on Exciton and Charge Diffusion in Polymer-Fullerene Solar Cells
    Presselt, Martin
    Herrmann, Felix
    Hoppe, Harald
    Shokhovets, Sviatoslav
    Runge, Erich
    Gobsch, Gerhard
    ADVANCED ENERGY MATERIALS, 2012, 2 (08) : 999 - 1003
  • [49] Mechanical Properties of Polymer-Fullerene Bulk Heterojunction Films: Role of Nanomorphology of Composite Films
    Kim, Jae-Han
    Noh, Jonghyeon
    Choi, Hyesun
    Lee, Jung-Yong
    Kim, Taek-Soo
    CHEMISTRY OF MATERIALS, 2017, 29 (09) : 3954 - 3961
  • [50] Photovoltaic limitations of BODIPY:fullerene based bulk heterojunction solar cells
    Baran, Derya
    Tuladhar, Sachetan
    Economopoulos, Solon P.
    Neophytou, Marios
    Savva, Achilleas
    Itskos, Grigorios
    Othonos, Andreas
    Bradley, Donal D. C.
    Brabec, Christoph J.
    Nelson, Jenny
    Choulis, Stelios A.
    SYNTHETIC METALS, 2017, 226 : 25 - 30