Combinatorial algorithms for minimizing the weighted sum of completion times on a single machine

被引:6
作者
Davis, James M. [1 ]
Gandhi, Rajiv [2 ]
Kothari, Vijay H. [3 ]
机构
[1] Cornell Univ, Dept Operat Res, Ithaca, NY 14850 USA
[2] Rutgers State Univ, Dept Comp Sci, Camden, NJ 08102 USA
[3] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
基金
美国国家科学基金会;
关键词
Scheduling; Algorithms; Online; Approximation; Primal-dual; Dual fitting; DATA MIGRATION;
D O I
10.1016/j.orl.2012.12.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of minimizing the weighted sum of completion times of jobs with release dates on a single machine with the aim of shedding new light on "the simplest (linear program) relaxation" (Queyranne and Schulz, 1994 [171). Specifically, we analyze a 3-competitive online algorithm (Megow and Schulz, 2004 [16]), using dual fitting. In the offline setting, we develop a primal-dual algorithm with approximation guarantee 1 + root 2. The latter implies that the cost of the optimal schedule is within a factor of 1 + root 2 of the cost of the optimal LP solution. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 125
页数:5
相关论文
共 23 条
[1]  
Anderson EJ, 2002, SIAM PROC S, P548
[2]  
[Anonymous], 1996, LECT NOTES COMPUTER
[3]  
[Anonymous], 2010, The Design of Approximation Algorithms, DOI DOI 10.1017/CBO9780511921735
[4]  
[Anonymous], P 40 ANN IEEE S FDN
[5]  
Brucker P., 1977, Ann. Discrete Math., V1, P343, DOI [DOI 10.1016/S0167-5060(08)70743-X, 10.1016/S0167-5060(08)70743-X]
[6]  
CHAKRABARTI S, 1996, LECT NOTES COMPUT SC, V1099, P646
[7]   Approximation techniques for average completion time scheduling [J].
Chekuri, C ;
Motwani, R ;
Natarajan, B ;
Stein, C .
SIAM JOURNAL ON COMPUTING, 2001, 31 (01) :146-166
[8]   Improved Results for Data Migration and Open Shop Scheduling [J].
Gandhi, Rajiv ;
Halldorsson, Magnus M. ;
Kortsarz, Guy ;
Shachnai, Hadas .
ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (01) :116-129
[9]   Combinatorial Algorithms for Data Migration to Minimize Average Completion Time [J].
Gandhi, Rajiv ;
Mestre, Julian .
ALGORITHMICA, 2009, 54 (01) :54-71
[10]   Two-dimensional Gantt charts and a scheduling algorithm of Lawler [J].
Goemans, MX ;
Williamson, DP .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (03) :281-294