Early Forest Fire Region Segmentation Based on Deep Learning

被引:0
|
作者
Wang, Guangyi [1 ]
Zhang, Youmin [2 ]
Qu, Yaohong [1 ]
Chen, Yanhong [3 ]
Maqsood, Hamid [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710029, Shaanxi, Peoples R China
[2] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ H3G 1M8, Canada
[3] Xian Univ Technol, Sch Automat, Xian 710048, Shaanxi, Peoples R China
来源
PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019) | 2019年
关键词
Deep Learning; Artificial Intelligence; Forest Fire and Semantic Segmentation;
D O I
10.1109/ccdc.2019.8833125
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As the forest fire can bring about great property loss and ecological disaster, artificial intelligence-based forest fire monitoring system has gained popularity in recent years to enable the fire alarm quickly and accurately. In this paper, considering that the fire area is very small and hard to be detected using traditional method for detection early forest fire, we propose a novel forest fire monitoring framework based on convolutional neutral networks. In order to validate that the proposed framework can improve effectiveness and accuracy of detecting the early forest fires, many groups of fire detection experiments using a self-generated forest fire dataset and two real forest fire monitor videos are conducted. The experiment results demonstrate its capability to work in various challenging fire and illumination conditions presented in the study, and show that the framework can effectively detect the early forest fire.
引用
收藏
页码:6237 / 6241
页数:5
相关论文
共 50 条
  • [41] A Forest Fire Detection System Based on Ensemble Learning
    Xu, Renjie
    Lin, Haifeng
    Lu, Kangjie
    Cao, Lin
    Liu, Yunfei
    FORESTS, 2021, 12 (02): : 1 - 17
  • [42] Combination of pixel-wise and region-based deep learning for pavement inspection and segmentation
    Liu, Cunqiang
    Li, Juan
    Gao, Jie
    Gao, Ziqiang
    Chen, Zhongjie
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2022, 23 (09) : 3011 - 3023
  • [43] Optimization of deep learning based segmentation method
    Inik, Ozkan
    Ulker, Erkan
    SOFT COMPUTING, 2022, 26 (07) : 3329 - 3344
  • [44] Fingerprint ROI Segmentation Based on Deep Learning
    Stojanovic, Branka
    Marques, Oge
    Neskovic, Aleksandar
    Puzovic, Snezana
    2016 24TH TELECOMMUNICATIONS FORUM (TELFOR), 2016, : 368 - 371
  • [45] Teeth Segmentation for Orthodontics based on Deep Learning
    Kim T.-H.
    Park J.-J.
    Transactions of the Korean Institute of Electrical Engineers, 2023, 72 (03) : 440 - 446
  • [46] Deep Learning Based Morphological Solder Segmentation
    Sontheimer, Moritz
    Chou, Shuo-Yan
    2022 12TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS (ICPRS), 2022,
  • [47] An Improved Forest Fire Detection Method Based on the Detectron2 Model and a Deep Learning Approach
    Abdusalomov, Akmalbek Bobomirzaevich
    Islam, Bappy M. D. Siful
    Nasimov, Rashid
    Mukhiddinov, Mukhriddin
    Whangbo, Taeg Keun
    SENSORS, 2023, 23 (03)
  • [48] Image Segmentation of a Sewer Based on Deep Learning
    He, Min
    Zhao, Qinnan
    Gao, Huanhuan
    Zhang, Xinying
    Zhao, Qin
    SUSTAINABILITY, 2022, 14 (11)
  • [49] Road Scene Segmentation Based on Deep Learning
    Zheng, Ke
    Naji, Hasan Abdullah Hasan
    IEEE ACCESS, 2020, 8 : 140964 - 140971
  • [50] Optimization of deep learning based segmentation method
    Özkan Inik
    Erkan Ülker
    Soft Computing, 2022, 26 : 3329 - 3344