The importance of genomic predictors for clinical outcome of hematological malignancies

被引:7
作者
Chen, Cunte [1 ]
Zeng, Chengwu [1 ]
Li, Yangqiu [1 ]
机构
[1] Jinan Univ, Inst Hematol, Sch Med, Key Lab Regenerat Med Minist Educ, Guangzhou, Peoples R China
来源
BLOOD SCIENCE | 2021年 / 3卷 / 03期
关键词
ACUTE MYELOID-LEUKEMIA; EXPRESSION; SURVIVAL;
D O I
10.1097/BS9.0000000000000075
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:93 / 95
页数:3
相关论文
共 19 条
  • [1] Expression profile analysis of prognostic long non-coding RNA in adult acute myeloid leukemia by weighted gene co-expression network analysis (WGCNA)
    Chen, Cun-Te
    Wang, Pei-Pei
    Mo, Wen-Jian
    Zhang, Yu-Ping
    Zhou, Wei
    Deng, Ting-Fen
    Zhou, Ming
    Chen, Xiao-Wei
    Wang, Shun-Qing
    Wang, Cai-Xia
    [J]. JOURNAL OF CANCER, 2019, 10 (19): : 4707 - 4718
  • [2] Tumor mutation burden estimated by a 69-gene-panel is associated with overall survival in patients with diffuse large B-cell lymphoma
    Chen, Cunte
    Liu, Sichu
    Jiang, Xinmiao
    Huang, Ling
    Chen, Feili
    Wei, Xiaojun
    Guo, Hanguo
    Shao, Yang
    Li, Yangqiu
    Li, Wenyu
    [J]. EXPERIMENTAL HEMATOLOGY & ONCOLOGY, 2021, 10 (01)
  • [3] Transcriptome-Based Co-Expression of BRD4 and PD-1/PD-L1 Predicts Poor Overall Survival in Patients With Acute Myeloid Leukemia
    Chen, Cunte
    Xu, Ling
    Gao, Rili
    Wang, Shunqing
    Zhang, Yuping
    Wang, Caixia
    Zeng, Chengwu
    Li, Yangqiu
    [J]. FRONTIERS IN PHARMACOLOGY, 2021, 11
  • [4] High expression of CD56 may be associated with favorable overall survival in intermediate-risk acute myeloid leukemia
    Chen, Cunte
    Chio, Chi Leong
    Zeng, Hui
    Li, Yangqiu
    [J]. HEMATOLOGY, 2021, 26 (01) : 210 - 214
  • [5] Expression patterns of immune checkpoints in acute myeloid leukemia
    Chen, Cunte
    Liang, Chaofeng
    Wang, Shunqing
    Chio, Chi Leong
    Zhang, Yuping
    Zeng, Chengwu
    Chen, Shaohua
    Wang, Caixia
    Li, Yangqiu
    [J]. JOURNAL OF HEMATOLOGY & ONCOLOGY, 2020, 13 (01)
  • [6] Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia
    Coombes, Caitlin E.
    Abrams, Zachary B.
    Li, Suli
    Abruzzo, Lynne, V
    Coombes, Kevin R.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (07) : 1019 - +
  • [7] Genomic approaches to hematologic malignancies
    Ebert, BL
    Golub, TR
    [J]. BLOOD, 2004, 104 (04) : 923 - 932
  • [8] Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects
    Eckardt, Jan-Niklas
    Bornhaeuser, Martin
    Wendt, Karsten
    Middeke, Jan Moritz
    [J]. BLOOD ADVANCES, 2020, 4 (23) : 6077 - 6085
  • [9] T-Cell Lymphomas, Version 1.2021 Featured Updates to the NCCN Guidelines
    Horwitz, Steven M.
    Ansell, Stephen
    Ai, Weiyun Z.
    Barnes, Jeffrey
    Berta, Stefan K.
    Clemens, Mark W.
    Dogan, Ahmet
    Goodman, Aaron M.
    Goyal, Gaurav
    Guitart, Joan
    Halwani, Ahmad
    Haverkos, Bradley M.
    Hoppe, Richard T.
    Jacobsen, Eric
    Jagadeesh, Deepa
    Jones, Allison
    Kim, Youn H.
    Mehta-Shah, Neha
    Olsen, Elise A.
    Pro, Barbara
    Rajguru, Saurabh A.
    Rozati, Sima
    Said, Jonathan
    Shaver, Aaron
    Shustov, Andrei
    Sokol, Lubomir
    Torka, Pallawi
    Torres-Cabala, Carlos
    Wilcox, Ryan
    William, Basem M.
    Zain, Jasmine
    Dwyer, Mary A.
    Sundar, Hema
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2020, 18 (11): : 1461 - +
  • [10] Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data
    Kim, Mi Hyeon
    Seo, Hwa Jeong
    Joung, Je-Gun
    Kim, Ju Han
    [J]. BMC BIOINFORMATICS, 2011, 12