Ekedahl-Oort and Newton strata for Shimura varieties of PEL type

被引:44
作者
Viehmann, Eva
Wedhorn, Torsten
机构
基金
欧洲研究理事会;
关键词
MODULI SPACES; STRATIFICATIONS; CLASSIFICATION; ISOCRYSTALS; POLYGONS;
D O I
10.1007/s00208-012-0892-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Ekedahl-Oort stratification for good reductions of Shimura varieties of PEL type. These generalize the Ekedahl-Oort strata defined and studied by Oort for the moduli space of principally polarized abelian varieties (the "Siegel case"). They are parameterized by certain elements in the Weyl group of the reductive group of the Shimura datum. We show that for every such the corresponding Ekedahl-Oort stratum is smooth, quasi-affine, and of dimension (and in particular non-empty). Some of these results have previously been obtained by Moonen, Vasiu, and the second author using different methods. We determine the closure relations of the strata. We give a group-theoretical definition of minimal Ekedahl-Oort strata generalizing Oort's definition in the Siegel case and study the question whether each Newton stratum contains a minimal Ekedahl-Oort stratum. As an interesting application we determine which Newton strata are non-empty. This criterion proves conjectures by Fargues and by Rapoport generalizing a conjecture by Manin for the Siegel case. We give a necessary criterion when a given Ekedahl-Oort stratum and a given Newton stratum meet.
引用
收藏
页码:1493 / 1550
页数:58
相关论文
共 68 条
[1]  
BERTHELOT P, 1982, LECT NOTES MATH, V930, pR3
[2]  
Bjorner A., 2005, Graduate Texts in Mathematics, V231, pxiv+363
[3]  
Borovoi M, 1998, MEM AM MATH SOC, V132, P1
[4]   Congruence relations for Shimura varieties associated to some unitary groups [J].
Bültel, O ;
Wedhorn, T .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2006, 5 (02) :229-261
[5]  
Chai CL, 2000, AM J MATH, V122, P967
[6]  
Chen M., CONNECTED COMP UNPUB
[7]  
DELIGNE P, 1994, COMPOS MATH, V90, P59
[8]  
Demazure M., 1970, Lecture Notes in Math, V151, P152
[9]  
Deng B., 2008, Mathematical Surveys and Monographs, V150
[10]  
Ekedahl T, 2009, PROG MATH, V269, P567, DOI 10.1007/978-0-8176-4745-2_13