Existence of W01,1(Ω) solutions to nonlinear elliptic equation with singular natural growth term

被引:3
|
作者
Ri, Maoji [1 ]
Huang, Shuibo [1 ,2 ]
Tian, Qiaoyu [1 ]
Ma, Zhan-Ping [3 ]
机构
[1] Northwest Minzu Univ, Sch Math & Comp Sci, Lanzhou 730030, Gansu, Peoples R China
[2] Northwest Minzu Univ, Key Lab Streaming Data Comp Technol & Applicat, Lanzhou 730030, Gansu, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Henan, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 06期
基金
中国国家自然科学基金;
关键词
noncoercivity; existence; nonlinear elliptic equation; DEGENERATE COERCIVITY; NONEXISTENCE;
D O I
10.3934/math.2020371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of W-0(1,1)(Omega) solutions to the following elliptic equation with principal part having noncoercivity and singular quadratic term {-div (del u/(1+vertical bar u vertical bar(gamma)) + vertical bar del u vertical bar/u(theta )= f, x is an element of Omega, u = 0, x is an element of partial derivative Omega, where Omega is a bounded smooth domain of R-N ( N >= 3), gamma > 0, N/ n-1 <= theta < 2, f is an element of L-m(Omega)(m >= 1) is a nonnegative function.
引用
收藏
页码:5791 / 5800
页数:10
相关论文
共 50 条